cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A141602 Integer part of 2^n/log(2^n).

This page as a plain text file.
%I A141602 #24 Sep 21 2024 08:41:20
%S A141602 2,2,3,5,9,15,26,46,82,147,268,492,909,1688,3151,5909,11123,21010,
%T A141602 39809,75638,144073,275050,526182,1008516,1936352,3723754,7171675,
%U A141602 13831089,26708310,51636066,99940774,193635250,375535031,728979766,1416303547
%N A141602 Integer part of 2^n/log(2^n).
%C A141602 2^n/log(2^n) is an approximation to the number of primes < 2^n.
%H A141602 G. C. Greubel, <a href="/A141602/b141602.txt">Table of n, a(n) for n = 1..1000</a>
%F A141602 a(n) = A050500(2^n) = floor(2^n*A007525/n) >= A000799(n). - _R. J. Mathar_, Jan 05 2009
%t A141602 Floor[2^#/Log[2^#]]&/@Range[40] (* _Harvey P. Dale_, Mar 11 2013 *)
%o A141602 (PARI) g(n) = for(x=1,n,y=floor(2^x/log(2^x));print1(y","))
%o A141602 (PARI) a(n) = 2^n\log(2^n); \\ _Michel Marcus_, Feb 24 2021
%o A141602 (Magma)
%o A141602 A141602:= func< n | Floor(2^n/(n*Log(2))) >;
%o A141602 [A141602(n): n in [1..40]]; // _G. C. Greubel_, Sep 21 2024
%o A141602 (SageMath)
%o A141602 def A141602(n): return int(2^n/(n*log(2)))
%o A141602 [A141602(n) for n in range(1,41)] # _G. C. Greubel_, Sep 21 2024
%Y A141602 Cf. A000799, A007525, A050500, A185192.
%K A141602 nonn
%O A141602 1,1
%A A141602 _Cino Hilliard_, Aug 21 2008