cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A141615 Inverse binomial transform of A120070.

This page as a plain text file.
%I A141615 #13 Sep 22 2024 11:05:29
%S A141615 3,5,-8,21,-47,84,-108,53,207,-876,2289,-5097,10770,-22720,48489,
%T A141615 -103569,217292,-440178,848628,-1533887,2542431,-3695469,4141675,
%U A141615 -1365090,-10867236,46576386,-135501531,338590821,-778823106,1704048861,-3617744616,7553704652,-15651526743,32346059748,-66772731098
%N A141615 Inverse binomial transform of A120070.
%H A141615 G. C. Greubel, <a href="/A141615/b141615.txt">Table of n, a(n) for n = 0..1000</a>
%F A141615 a(n) = Sum_{k=0..n} (-1)^(n+k)*binomial(n,k)*A120070(k). - _G. C. Greubel_, Sep 22 2024
%t A141615 A120070 = Table[n^2 - k^2, {n,2,100}, {k,n-1}]//Flatten;
%t A141615 A141615[n_]:= Sum[(-1)^(n+k)*Binomial[n, k]*A120070[[k+1]], {k,0,n}];
%t A141615 Table[A141615[n], {n,0,40}] (* _G. C. Greubel_, Sep 22 2024 *)
%o A141615 (Magma)
%o A141615 A120070:= [n^2-k^2: k in [1..n-1], n in [2..100]];
%o A141615 A141615:= func< n | (&+[(-1)^(n+k)*Binomial(n, k)*A120070[k+1]: k in [0..n]]) >;
%o A141615 [A141615(n): n in [0..40]]; // _G. C. Greubel_, Sep 22 2024
%o A141615 (SageMath)
%o A141615 A120070=flatten([[n^2 -k^2 for k in range(1, n)] for n in range(2, 101)])
%o A141615 def A141615(n): return sum((-1)^(n+k)*binomial(n, k)*A120070[k] for k in range(n+1))
%o A141615 [A141615(n) for n in range(41)] # _G. C. Greubel_, Sep 22 2024
%Y A141615 Cf. A120070, A141595.
%K A141615 sign,easy
%O A141615 0,1
%A A141615 _Paul Curtz_, Aug 23 2008
%E A141615 More terms from _N. J. A. Sloane_, Jan 25 2011