cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A141678 Symmetrical triangle of coefficients based on invert transform of A001906.

This page as a plain text file.
%I A141678 #44 Feb 19 2025 17:31:53
%S A141678 1,3,3,8,9,8,21,24,24,21,55,63,64,63,55,144,165,168,168,165,144,377,
%T A141678 432,440,441,440,432,377,987,1131,1152,1155,1155,1152,1131,987,2584,
%U A141678 2961,3016,3024,3025,3024,3016,2961,2584,6765,7752,7896,7917,7920,7920,7917,7896,7752,6765
%N A141678 Symmetrical triangle of coefficients based on invert transform of A001906.
%C A141678 Row sums are {1, 6, 25, 90, 300, 954, 2939, 8850, 26195, 76500, ...}.
%C A141678 It can be noticed that the interior of the triangle is relatively "flat", which is a smaller variation than in most symmetrical triangles of this type.
%C A141678 16*T(n,k) is the number of Boolean (equivalently, lattice, modular lattice, distributive lattice) intervals of the form [s_{k+1},w] in the Bruhat order on S_{n+3}, for the simple reflection s_{k+1}. - _Bridget Tenner_, Jan 16 2020
%H A141678 G. C. Greubel, <a href="/A141678/b141678.txt">Rows n=1..101 of triangle, flattened</a>
%H A141678 Matthew Blair, Rigoberto Flórez, and Antara Mukherjee, <a href="https://arxiv.org/abs/2203.13205">Honeycombs in the Pascal triangle and beyond</a>, arXiv:2203.13205 [math.HO], 2022. See p. 5.
%H A141678 B. E. Tenner, <a href="https://arxiv.org/abs/2001.05011">Interval structures in the Bruhat and weak orders</a>, arXiv:2001.05011 [math.CO], 2020.
%F A141678 Let b(n) = Sum_{k=1..n} k*b(n - k), then T(n, m) = b(n-m+1)*b(m+1).
%F A141678 Alternatively, let f(n) = Fibonacci(2*n) with f(0)=1, then T(n, k) = f(n-k+1)*f(k+1). - _G. C. Greubel_, Apr 06 2019
%e A141678 Triangle begins as:
%e A141678     1;
%e A141678     3,   3;
%e A141678     8,   9,   8;
%e A141678    21,  24,  24,  21;
%e A141678    55,  63,  64,  63,  55;
%e A141678   144, 165, 168, 168, 165, 144;
%e A141678   377, 432, 440, 441, 440, 432, 377; ...
%t A141678 b[0]=1; b[n_]:= Sum[k*b[n-k], {k, 1, n}];
%t A141678 Table[b[n-m+1]*b[m+1], {n, 0, 10}, {m, 0, n}]//Flatten
%t A141678 f[n_]:= If[n == 0, 1, Fibonacci[2*n]]; Table[f[n-k+1]*f[k+1], {n, 0, 10}, {k, 0, n}]//Flatten (* _G. C. Greubel_, Apr 06 2019 *)
%o A141678 (PARI) {b(n) = if(n==0, 1, fibonacci(2*n))};
%o A141678 for(n=0, 10, for(k=0, n, print1(b(n-k+1)*b(k+1), ", "))) \\ _G. C. Greubel_, Apr 06 2019
%o A141678 (Magma) b:= func< n| n eq 0 select 1 else Fibonacci(2*n) >; [[b(n-k+1)*b(k+1): k in [0..n]]: n in [0..10]]; // _G. C. Greubel_, Apr 06 2019
%o A141678 (Sage)
%o A141678 @CachedFunction
%o A141678 def b(n):
%o A141678     if n==0: return 1
%o A141678     return fibonacci(2*n)
%o A141678 [[b(n-k+1)*b(k+1) for k in (0..n)] for n in (0..10)] # _G. C. Greubel_, Apr 06 2019
%Y A141678 Cf. A001906.
%K A141678 nonn,tabl
%O A141678 1,2
%A A141678 _Roger L. Bagula_ and _Gary W. Adamson_, Sep 07 2008
%E A141678 Edited by _G. C. Greubel_, Apr 02 2019