This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A141680 #18 Jun 05 2018 22:33:18 %S A141680 1,4,1,9,0,1,16,12,0,1,25,0,0,0,1,36,45,40,0,0,1,49,0,0,0,0,0,1,64, %T A141680 112,0,140,0,0,0,1,81,0,252,0,0,0,0,0,1,100,225,0,0,504,0,0,0,0,1 %N A141680 Triangle read by rows: T(n,m) = (n/m)*binomial(n,m) if m divides n, otherwise 0. %C A141680 Row sums are: 1, 5, 10, 29, 26, 122, 50, 317, 334, 830, ... A105862. %H A141680 G. C. Greubel, <a href="/A141680/b141680.txt">Rows n=1..100 of triangle, flattened</a> %F A141680 T(n,m) = A126988(n,m)*binomial(n,m). %F A141680 T(n,1) = n^2. T(n,n) = 1. T(2n,2) = A015237(n). %e A141680 1; %e A141680 4, 1; %e A141680 9, 0, 1; %e A141680 16, 12, 0, 1; %e A141680 25, 0, 0, 0, 1; %e A141680 36, 45, 40, 0, 0, 1; %e A141680 49, 0, 0, 0, 0, 0, 1; %e A141680 64, 112, 0, 140, 0, 0, 0, 1; %e A141680 81, 0, 252, 0, 0, 0, 0, 0, 1; %e A141680 100, 225, 0, 0, 504, 0, 0, 0, 0, 1; %t A141680 t[n_, m_] = If[Mod[n, m] == 0, n/m, 0]*Binomial[n, m]; Table[Table[t[n, m], {m, 1, n}], {n, 1, 10}]; Flatten[%] %Y A141680 Cf. A015237, A105862, A126988. %K A141680 nonn,tabl %O A141680 1,2 %A A141680 _Roger L. Bagula_ and _Gary W. Adamson_, Sep 07 2008