This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A141681 #11 Jun 05 2018 22:33:25 %S A141681 1,-4,1,-9,0,1,32,-12,0,1,-25,0,0,0,1,504,-45,-40,0,0,1,-49,0,0,0,0,0, %T A141681 1,-4096,1568,0,-140,0,0,0,1,2187,0,-252,0,0,0,0,0,1,13400,-225,0,0, %U A141681 -504,0,0,0,0,1,-121,0,0,0,0,0,0,0,0,0,1 %N A141681 The matrix inverse of the triangle A141680. %C A141681 Row sums are 1, -3, -8, 21, -24, 420, -48, -2667, 1936, 12672, ... %H A141681 G. C. Greubel, <a href="/A141681/b141681.txt">Rows n=1..100 of triangle, flattened</a> %F A141681 Sum_{j=k..n} T(n,j) * A141680(j,k) = delta(n,k). %e A141681 Triangle begins %e A141681 1; %e A141681 -4, 1; %e A141681 -9, 0, 1; %e A141681 32, -12, 0, 1; %e A141681 -25, 0, 0, 0, 1; %e A141681 504, -45, -40, 0, 0, 1; %e A141681 -49, 0, 0, 0, 0, 0, 1; %e A141681 -4096, 1568, 0, -140, 0, 0, 0, 1; %e A141681 2187, 0, -252, 0, 0, 0, 0, 0, 1; %e A141681 13400, -225, 0, 0, -504, 0, 0, 0, 0, 1; %t A141681 t[n_, m_] = If[Mod[n, m] == 0, n/m, 0]*Binomial[n, m]; Table[Table[t[n, m], {m, 1, n}], {n, 1, 10}]; Flatten[%]; Table[Sum[t[n, m], {m, 1, n}], {n, 1, 10}]; M = Inverse[Table[Table[t[n, m], {m, 1, 10}], {n, 1, 10}]]; Table[Table[M[[n, m]], {m, 1, n}], {n, 1, 10}]; Flatten[%] %Y A141681 Cf. A126988. %K A141681 tabl,sign %O A141681 1,2 %A A141681 _Roger L. Bagula_ and _Gary W. Adamson_, Sep 07 2008