This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A141686 #10 Jan 04 2025 22:47:38 %S A141686 1,1,1,1,8,1,1,33,33,1,1,104,396,104,1,1,285,3020,3020,285,1,1,720, %T A141686 17865,48320,17865,720,1,1,1729,90153,546665,546665,90153,1729,1,1, %U A141686 4016,409024,4941104,10933300,4941104,409024,4016,1,1,9117,1722240,38236128,165104604,165104604,38236128,1722240,9117,1 %N A141686 Triangle read by rows: T(n, k) = binomial(n-1, k-1)*A008292(n, k). %H A141686 Reinhard Zumkeller, <a href="/A141686/b141686.txt">Rows n = 1..125 of table, flattened</a> %F A141686 T(n, k) = T(n, n-k+1). %F A141686 Sum_{k=1..n} T(n, k) = A104098(n) (row sums). %e A141686 Triangle begins as: %e A141686 1; %e A141686 1, 1; %e A141686 1, 8, 1; %e A141686 1, 33, 33, 1; %e A141686 1, 104, 396, 104, 1; %e A141686 1, 285, 3020, 3020, 285, 1; %e A141686 1, 720, 17865, 48320, 17865, 720, 1; %e A141686 1, 1729, 90153, 546665, 546665, 90153, 1729, 1; %e A141686 1, 4016, 409024, 4941104, 10933300, 4941104, 409024, 4016, 1; %e A141686 1, 9117, 1722240, 38236128, 165104604, 165104604, 38236128, 1722240, 9117, 1; %t A141686 (* Recurrence for A008292 *) %t A141686 f[n_, k_]:= If[k==1||k==n,1, (n-k+1)*f[n-1,k-1] + k*f[n-1,k]]; %t A141686 Table[f[n, k]*Binomial[n-1,k-1], {n,12}, {k,n}]//Flatten %t A141686 (* Second program *) %t A141686 Needs["Combinatorica`"]; %t A141686 A141686[n_, k_]:= Binomial[n-1,k-1]*Eulerian[n,k-1]; %t A141686 Table[A141686[n,k], {n,12}, {k,n}]//Flatten (* _G. C. Greubel_, Dec 31 2024 *) %o A141686 (Haskell) %o A141686 a141686 n k = a141686_tabl !! (n-1) !! (k-1) %o A141686 a141686_row n = a141686_tabl !! (n-1) %o A141686 a141686_tabl = zipWith (zipWith (*)) a007318_tabl a008292_tabl %o A141686 -- _Reinhard Zumkeller_, Apr 16 2014 %o A141686 (Magma) %o A141686 A141686:= func< n, k | Binomial(n-1, k-1)*EulerianNumber(n, k-1) >; %o A141686 [A141686(n, k): k in [1..n], n in [1..12]]; // _G. C. Greubel_, Dec 31 2024 %o A141686 (Python) # or SageMath %o A141686 from sage.combinat.combinat import eulerian_number %o A141686 def A141686(n,k): return binomial(n-1,k-1)*eulerian_number(n,k-1) %o A141686 print(flatten([[A141686(n,k) for k in range(1,n+1)] for n in range(1,13)])) # _G. C. Greubel_, Dec 31 2024 %Y A141686 Cf. A007318, A008292, A104098. %K A141686 nonn,tabl %O A141686 1,5 %A A141686 _Roger L. Bagula_ and _Gary W. Adamson_, Sep 08 2008 %E A141686 keyword:tabl inserted, indices corrected by the Assoc. Eds. of the OEIS, Jun 30 2010