This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A141692 #30 Feb 16 2025 08:33:08 %S A141692 0,-1,1,-2,0,2,-3,-3,3,3,-4,-8,0,8,4,-5,-15,-10,10,15,5,-6,-24,-30,0, %T A141692 30,24,6,-7,-35,-63,-35,35,63,35,7,-8,-48,-112,-112,0,112,112,48,8,-9, %U A141692 -63,-180,-252,-126,126,252,180,63,9,-10,-80,-270,-480,-420,0,420,480,270,80,10 %N A141692 Triangle read by rows: T(n,k) = n*(binomial(n - 1, k - 1) - binomial(n - 1, k)), 0 <= k <= n. %C A141692 The row sums are zero. %C A141692 Row n consists of the coefficients in the expansion of n*(x - 1)*(x + 1)^(n - 1). - _Franck Maminirina Ramaharo_, Oct 02 2018 %H A141692 G. C. Greubel, <a href="/A141692/b141692.txt">Table of n, a(n) for n = 0..5150</a> (Rows n=1..100 of triangle, flattened; offset adapted by _Georg Fischer_, Jan 31 2019) %H A141692 Rida T. Farouki, <a href="https://doi.org/10.1016/j.cagd.2012.03.001">The Bernstein polynomial basis: A centennial retrospective</a>, Computer Aided Geometric Design Vol. 29 (2012), 379-419. %H A141692 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BernsteinPolynomial.html">Bernstein Polynomial</a> %H A141692 Wikipedia, <a href="https://en.wikipedia.org/wiki/Bernstein_polynomial">Bernstein polynomial</a> %F A141692 T(n,k) = n*(B(1/2;n-1,k-1) - B(1/2;n-1,k))*2^(n - 1), where B(t;n,k) = binomial(n,k)*t^k*(1 - t)^(n - k) denotes the k-th Benstein basis polynomial of degree n. %F A141692 T(n,k) = n*A112467(n,k). %F A141692 From _Franck Maminirina Ramaharo_, Oct 02 2018: (Start) %F A141692 T(n,k) = -T(n,n-k) %F A141692 T(n,0) = -n. %F A141692 T(n,1) = -A067998(n) %F A141692 E.g.f.: (x*y - y)/(x*y + y - 1)^2. %F A141692 Sum_{k=0..n} abs(T(n,k)) = 2*A100071(n). %F A141692 Sum_{k=0..n} T(n,k)^2 = 2*A037965(n). %F A141692 Sum_{k=0..n} k*T(n,k) = A001787(n). %F A141692 Sum_{k=0..n} k^2*T(n,k) = A014477(n-1). (End) %e A141692 Triangle begins: %e A141692 0; %e A141692 -1, 1; %e A141692 -2, 0, 2; %e A141692 -3, -3, 3, 3; %e A141692 -4, -8, 0, 8, 4; %e A141692 -5, -15, -10, 10, 15, 5; %e A141692 -6, -24, -30, 0, 30, 24, 6; %e A141692 -7, -35, -63, -35, 35, 63, 35, 7; %e A141692 -8, -48, -112, -112, 0, 112, 112, 48, 8; %e A141692 -9, -63, -180, -252, -126, 126, 252, 180, 63, 9; %e A141692 -10, -80, -270, -480, -420, 0, 420, 480, 270, 80, 10; %e A141692 ... %p A141692 a:=proc(n,k) n*(binomial(n-1,k-1)-binomial(n-1,k)); end proc: seq(seq(a(n,k),k=0..n),n=0..10); # _Muniru A Asiru_, Oct 03 2018 %t A141692 Table[Table[n*(Binomial[n - 1, k - 1] - Binomial[n - 1, k]),{k, 0, n}],{n, 0, 12}]//Flatten %o A141692 (Maxima) T(n, k) := n*(binomial(n - 1, k - 1) - binomial(n - 1, k))$ %o A141692 tabl(nn) := for n:0 thru nn do print(makelist(T(n, k), k, 0, n))$ /* _Franck Maminirina Ramaharo_, Oct 02 2018 */ %Y A141692 Cf. A007318, A112467, A128433, A128434. %K A141692 easy,tabl,sign %O A141692 0,4 %A A141692 _Roger L. Bagula_, Sep 09 2008 %E A141692 Edited, new name and offset corrected by _Franck Maminirina Ramaharo_, Oct 02 2018