This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A141693 #20 Feb 16 2025 08:33:08 %S A141693 0,-1,1,-2,0,2,-3,-4,1,3,-4,-22,0,2,4,-5,-78,-66,26,3,5,-6,-228,-604, %T A141693 0,114,4,6,-7,-600,-3573,-2416,1191,360,5,7,-8,-1482,-17172,-31238,0, %U A141693 8586,988,6,8,-9,-3514,-73040,-264702,-156190,88234,43824,2510,7,9,-10 %N A141693 Triangle read by rows: T(n,k) = (2*k - n)*A008292(n,k) with T(n,n) = n, 0 <= k <= n, where A008292 is the triangle of Eulerian numbers. %H A141693 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/EulerianNumber.html">Eulerian Number</a> %H A141693 Wikipedia, <a href="https://en.wikipedia.org/wiki/Eulerian_number">Eulerian number</a> %F A141693 Sum_{k=0..n} T(n,k) = A005096(n), n > 0. %F A141693 From _Franck Maminirina Ramaharo_, Oct 06 2018: (Start) %F A141693 T(n,k) = (2*k - n)*Sum_{j=0..k} (-1)^j*(k - j + 1)^n*binomial(n + 1, j) for 0 <= k <= n - 1 and T(n,n) = n. %F A141693 T(2*n-1,n-1) = -A025585(n). %F A141693 T(2*n,n-1) = -A177042(n). (End) %e A141693 Triangle begins: %e A141693 0; %e A141693 -1, 1; %e A141693 -2, 0, 2; %e A141693 -3, -4, 1, 3; %e A141693 -4, -22, 0, 2, 4; %e A141693 -5, -78, -66, 26, 3, 5; %e A141693 -6, -228, -604, 0, 114, 4, 6; %e A141693 -7, -600, -3573, -2416, 1191, 360, 5, 7; %e A141693 -8, -1482, -17172, -31238, 0, 8586, 988, 6, 8; %e A141693 -9, -3514, -73040, -264702, -156190, 88234, 43824, 2510, 7, 9; %e A141693 ... %p A141693 T:= proc(n,k) `if`(n=k,n,(2*k-n)*add((-1)^j*(k-j+1)^n*binomial(n+1,j),j=0..k)); end proc: seq(seq(T(n,k),k=0..n),n=0..10); # _Muniru A Asiru_, Oct 06 2018 %p A141693 T := (n, k) -> `if`(n = k, n, (2*k - n)*combinat:-eulerian1(n,k)): %p A141693 seq(seq(T(n,k), k=0..n), n=0..9); # _Peter Luschny_, Oct 06 2018 %t A141693 T[n_, k_] = If[n == k, n, (2*k - n)*Sum[(-1)^j*(k - j + 1)^n*Binomial[n + 1, j], {j, 0, k}]]; %t A141693 Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}]//Flatten %o A141693 (Maxima) T(n, k) := if n = k then n else (2*k - n)*sum((-1)^j*(k - j + 1)^n*binomial(n + 1, j), j, 0, k)$ %o A141693 tabl(nn) := for n:0 thru nn do print(makelist(T(n, k), k, 0, n))$ /* _Franck Maminirina Ramaharo_, Oct 05 2018 */ %Y A141693 Cf. A008292. %K A141693 tabl,sign,easy %O A141693 0,4 %A A141693 _Roger L. Bagula_, Sep 09 2008 %E A141693 Edited, new name and offset corrected by _Franck Maminirina Ramaharo_, Oct 06 2018