cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A141706 a(n) is the largest Carmichael number of the form prime(n)*prime(n')*prime(n") with n < n' < n", or 0 if no such number exists.

Original entry on oeis.org

0, 561, 10585, 52633, 0, 530881, 7207201, 1024651, 1615681, 5444489, 471905281, 36765901, 2489462641, 564651361, 958762729, 17316001, 178837201, 1574601601, 7991602081, 597717121, 962442001, 4461725581, 167385219121, 43286923681
Offset: 1

Views

Author

M. F. Hasler, Jul 03 2008

Keywords

Comments

Primes for which there are no such numbers (i.e. prime(n) such that a(n)=0) are given in A051663.

Examples

			a(1)=0 since there is no Carmichael number having prime(1)=2 as factor.
a(2)=561 since this is the largest (since only) Carmichael number of the form pqr with prime r>q>p=prime(2)=3.
a(5)=0 since there is no Carmichael number of the form pqr with prime r>q>p=prime(5)=11.
		

Crossrefs

Programs

  • PARI
    A141706(n) = { /* based on code by J.Brennen (jb AT brennen.net) */ local( V=[], B, p=prime(n), q, r); for( A=1, p-1, B=ceil((p^2+1)/A); while( 1, r=(p*B-p+A*B-B)/(A*B-p*p); q=(A*r-A+1)/p; q<=p && break; denominator(q)==1 && denominator(r)==1 && r>q && isprime(q) && isprime(r) && (p*q*r)%(p-1)==1 && V=concat(V,[p*q*r]); B++ )); if( V, vecmax( V ))}