This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A141728 #8 Aug 24 2012 10:50:01 %S A141728 1,0,0,0,1,0,1,0,1,0,0,1,1,0,0,0,1,0,0,1,0,0,1,0,1,0,0,0,0,0,0,0,0,1, %T A141728 1,1,1,0,1,0,1,0,1,0,0,1,1,0,0,0,0,1,1,0,0,1,1,1,1,0,1,1,0,1,1,0,0,1, %U A141728 0,0,0,1,1,1,0,1,0,1,0,0,0,0,0,0,0,0,0,1,1,0,0,1,0,0,1,1,1,0,1,0,1,0,1,0,1 %N A141728 Triangle read by rows T(n,k). Triangle elements are 0 and 1. Starting with 1 in the top add below a second row of (2n-1) elements (with n=2 -> 3). Moving from left to right add 1 if the number of adjacent 1's is even or add 0 if it is odd. See example below. %C A141728 Any diagonal, read top down from right to left, expresses a periodic sequence of 0'0's and 1's Lengths of the periods are alway powers of 2. Here below the periods for the first 20 diagonals: %C A141728 10 %C A141728 0 %C A141728 0110 %C A141728 0110 %C A141728 1000 %C A141728 0 %C A141728 01011010 %C A141728 00011110 %C A141728 11011000 %C A141728 11110000 %C A141728 11001010 %C A141728 01100000 %C A141728 01000110 %C A141728 0110 %C A141728 1011011101001000 %C A141728 0111111110000000 %C A141728 0000111101011010 %C A141728 1110000100011110 %C A141728 0100000111011000 %C A141728 1001011100001110 %H A141728 Paolo P. Lava, <a href="/A141728/a141728.pdf">Picture of Triangle A141728</a> %e A141728 .....................................1 First Row %e A141728 ..................................0 ... Add 0 to have an odd number of adjacent 1's %e A141728 .....................................1 First Row %e A141728 ...................................0.0 ... Add again 0 to have an odd number of adjacent 1's %e A141728 ......................................1 First Row %e A141728 ...................................0.0.0 ... Again add 0 to have an odd number of adjacent 1's %e A141728 The second row is now complete. %e A141728 .....................................1 First Row %e A141728 ...................................0.0.0 Second Row %e A141728 .................................1 ... Add 1 because there are no adjacent 1's %e A141728 .....................................1 First Row %e A141728 ...................................0.0.0 Second Row %e A141728 .................................1.0 ... Add 0 because there is one adjacent 1 (third row) %e A141728 .....................................1 First Row %e A141728 ...................................0.0.0 Second Row %e A141728 .................................1.0.1 ... Add 1 because there is no adjacent 1 %e A141728 .....................................1 First Row %e A141728 ...................................0.0.0 Second Row %e A141728 .................................1.0.1.0 ... Add 0 because there is only an 1 adjacent (third row) %e A141728 .....................................1 First Row %e A141728 ...................................0.0.0 Second Row %e A141728 .................................1.0.1.0.1 ... Add 1 because there is no adjacent 1 %e A141728 The third row is now complete. Then repeat the process for the other rows. %Y A141728 Cf. A141727, A141729-A141746. %K A141728 easy,nonn,tabf %O A141728 0,1 %A A141728 _Paolo P. Lava_ and _Giorgio Balzarotti_, Jul 02 2008