This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A141750 #31 Feb 18 2022 16:07:14 %S A141750 2,3,19,23,37,41,61,67,71,73,79,89,97,109,127,137,149,173,181,211,223, %T A141750 227,251,257,269,283,293,311,317,347,349,353,359,367,373,383,389,397, %U A141750 401,419,439,457,461,463,479,487,499,503,509,523,547,557,587,593,607 %N A141750 Primes of the form 4*x^2 + 3*x*y - 4*y^2 (as well as of the form 2*x^2 + 9*x*y + y^2). %C A141750 Discriminant = 73. Class = 1. Binary quadratic forms a*x^2 + b*x*y + c*y^2 have discriminant d = b^2-4ac. %C A141750 Is this the same as A038957? - _R. J. Mathar_, Jul 04 2008. Answer: almost certainly - see the Tunnell notes in A033212. - _N. J. A. Sloane_, Oct 18 2014 %D A141750 Z. I. Borevich and I. R. Shafarevich, Number Theory. %H A141750 N. J. A. Sloane et al., <a href="/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a>: Index to related sequences, programs, references. OEIS wiki, June 2014. %H A141750 D. B. Zagier, <a href="https://doi.org/10.1007/978-3-642-61829-1">Zetafunktionen und quadratische Körper</a>, Springer, 1981. %e A141750 a(2) = 3 because we can write 3 = 4*1^2 + 3*1*1 - 4*1^2. %Y A141750 See also A038872 (d=5). A038873 (d=8). A068228, A141123 (d=12). A038883 (d=13). A038889 (d=17). A141158 (d=20). A141159, A141160 (d=21). A141170, A141171 (d=24). A141172, A141173 (d=28). A141174, A141175 (d=32). A141176, A141177 (d=33). A141178 (d=37). A141179, A141180 (d=40). A141181 (d=41). A141182, A141183 (d=44). A033212, A141785 (d=45). A068228, A141187 (d=48). A141188 (d=52). A141189 (d=53). A141190, A141191 (d=56). A141192, A141193 (d=57). A107152, A141302, A141303, A141304 (d=60). A141215 (d=61). A141111, A141112 (d=65). A141161, A141163 (d=148). A141165, A141166 (d=229). A141167, A141168 (d=257). %K A141750 nonn %O A141750 1,1 %A A141750 Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (sergarmor(AT)yahoo.es), Jul 03 2008