cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A141775 Binomial transform of (1, 2, 0, 1, 2, 0, 1, 2, 0, ...).

This page as a plain text file.
%I A141775 #25 Sep 08 2022 08:45:35
%S A141775 1,3,5,8,15,31,64,129,257,512,1023,2047,4096,8193,16385,32768,65535,
%T A141775 131071,262144,524289,1048577,2097152,4194303,8388607,16777216,
%U A141775 33554433,67108865,134217728,268435455,536870911,1073741824,2147483649,4294967297,8589934592,17179869183
%N A141775 Binomial transform of (1, 2, 0, 1, 2, 0, 1, 2, 0, ...).
%C A141775 From _Paul Curtz_, Jun 15 2011: (Start)
%C A141775 A square array of a(n) and its higher order differences is defined by T(0,k) = a(k) and T(n,k) = T(n-1,k+1)-T(n-1,k):
%C A141775 1, 3, 5, 8, 15, 31,
%C A141775 2, 2, 3, 7, 16, 33,
%C A141775 0, 1, 4, 9, 17, 32, see A130785(n).
%C A141775 1, 3, 5, 8, 15, 31,
%C A141775 2, 2, 3, 7, 16, 33,
%C A141775 a(n) is identical to its third differences: T(n+3,k) = T(n,k).
%C A141775 The main diagonal is T(n,n) = 2^n. Subdiagonals are T(n,n-1) = A014551(n) and T(n,n-2) = A062510(n).
%C A141775 (End)
%H A141775 Harvey P. Dale, <a href="/A141775/b141775.txt">Table of n, a(n) for n = 0..1000</a>
%H A141775 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,2).
%F A141775 From _Paul Curtz_, Jun 15 2011: (Start)
%F A141775 a(n) = 3*a(n-1) - 3*a(n-2) + 2*a(n-3).
%F A141775 a(n) = 2^n - A128834(n).
%F A141775 a(n) - 2a(n-1)= A057079(n+1).
%F A141775 a(n) + a(n+3) = 9*2^n.
%F A141775 a(n+6) - a(n) = 63*2^n.
%F A141775 a(n) = A130785(n) - A130785(n-1). (End)
%F A141775 G.f.: (x-1)*(1+x) / ( (2*x-1)*(x^2-x+1) ). - _R. J. Mathar_, Jun 22 2011
%F A141775 a(n) = 2^n + (2*sin((Pi*n)/3))/sqrt(3). - _Colin Barker_, Feb 10 2017
%e A141775 a(4) = 8 = (1, 2, 0, 1) dot (1, 3, 3, 1) = (1 + 6 + 0 + 1).
%t A141775 LinearRecurrence[{3,-3,2},{1,3,5},40] (* _Harvey P. Dale_, May 29 2012 *)
%o A141775 (PARI) x='x+O('x^30); Vec((x-1)*(1+x)/((2*x-1)*(x^2-x+1))) \\ _G. C. Greubel_, Jan 15 2018
%o A141775 (Magma) I:=[1,3,5]; [n le 3 select I[n] else 3*Self(n-1) - 3*Self(n-2) + 2*Self(n-3): n in [1..30]]; // _G. C. Greubel_, Jan 15 2018
%Y A141775 Cf. A000079, A057079.
%K A141775 nonn,easy
%O A141775 0,2
%A A141775 _Gary W. Adamson_, Jul 03 2008