cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A141777 Primes of the form -3*x^2 + 4*x*y + 6*y^2 (as well as of the form 7*x^2 + 12*x*y + 2*y^2).

This page as a plain text file.
%I A141777 #14 Feb 18 2022 16:10:28
%S A141777 2,7,13,29,61,79,101,109,127,149,151,167,173,197,239,263,271,277,293,
%T A141777 349,359,373,431,439,461,479,503,541,557,607,613,677,701,733,743,821,
%U A141777 853,877,887,919,941,967,997,1031,1063,1069,1117,1151,1223,1229,1231
%N A141777 Primes of the form -3*x^2 + 4*x*y + 6*y^2 (as well as of the form 7*x^2 + 12*x*y + 2*y^2).
%C A141777 Discriminant = 88. Class = 2. Binary quadratic forms a*x^2 + b*x*y + c*y^2 have discriminant d = b^2 - 4ac.
%D A141777 Z. I. Borevich and I. R. Shafarevich, Number Theory.
%H A141777 N. J. A. Sloane et al., <a href="/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a>: Index to related sequences, programs, references. OEIS wiki, June 2014.
%H A141777 D. B. Zagier, <a href="https://doi.org/10.1007/978-3-642-61829-1">Zetafunktionen und quadratische Körper</a>, Springer, 1981.
%e A141777 a(2) = 7 because we can write 7 = -3*1^2 + 4*1*1 + 6*1^2 (= 7*1^2 + 12*1*0 + 2*0^2).
%Y A141777 Cf. A141776 (d=88).
%K A141777 nonn
%O A141777 1,1
%A A141777 Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (sergarmor(AT)yahoo.es), Jul 04 2008
%E A141777 More terms from _Colin Barker_, Apr 05 2015