This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A141779 #11 Jun 07 2021 04:42:46 %S A141779 58,282,367,743,808,1015,1141,1299,1962,2109,2179,2397,2501,3704,3825, %T A141779 3912,3932,3935,4016,4049,4247,4327,4598,4915,4977,5210,5266,5396, %U A141779 5420,5512,5562,5773,5981,6031,6249,6616,6984,7117,7121,7304,7338,7424,7653 %N A141779 Numbers k such that A120292(k) is composite. %C A141779 Composite terms of A120292 are listed in A141781 = {3599, 118477, 210589, 971573, 1164103, 1901959, 2446681, 3230069, ...}. %C A141779 Note that all listed terms correspond to semiprimes, for example: 3599 = 59*61, 118477 = 257*461, 210589 = 251*839, 971573 = 643*1511. %C A141779 Conjecture: All composite terms of A120292 are semiprime. %F A141779 A141781(n) = A120292( a(n) ). %t A141779 Do[f=Numerator[Abs[(1 - Sum[Prime[k] + 1,{k, 1, n}])/Product[Prime[k] + 1, {k, 1, n}] ]];If[ !PrimeQ[f]&&!(f==1),Print[{n,f,FactorInteger[f]}]],{n,1,8212}] %o A141779 (PARI) for(n=1,100,t=abs(numerator(matdet(matrix(n,n,i,j,if(i==j, prime(i)/(1+prime(i)),1))))); if(t>3 && !isprime(t), print1(n", "))) \\ _Charles R Greathouse IV_, Feb 07 2013 %Y A141779 Cf. A120292 = Absolute value of numerator of determinant of n X n matrix with elements M[i, j] = prime(i)/(1+prime(I)) if i=j and 1 otherwise. %Y A141779 Cf. A125716 (k such that A120292(k) = 1). %Y A141779 Cf. A141780 (k such that A120292(k) is prime). %Y A141779 Cf. A141781 (terms of A120292 that are greater than 1 and are not prime; or A120292(A141779)). %K A141779 nonn %O A141779 1,1 %A A141779 _Alexander Adamchuk_, Jul 04 2008