A141782 Number of connected graphs with one cycle of length m = n-4 and n nodes.
18, 28, 32, 45, 52, 69, 79, 100, 114, 140, 158, 189, 212, 249, 277, 320, 354, 404, 444, 501, 548, 613, 667, 740, 802, 884, 954, 1045, 1124, 1225, 1313, 1424, 1522, 1644, 1752, 1885, 2004, 2149, 2279, 2436, 2578, 2748, 2902, 3085, 3252
Offset: 7
Keywords
Examples
E.g. a(9)=32. Click the link to see an illustration of the 32 unicyclic graphs of order 9 with a pentagon.
Links
- Washington Bomfim, Table of n, a(n) for n = 7..100
- Washington Bomfim, The 32 unicyclic graphs of order 9 with a pentagon..
Programs
-
PARI
m=n-4 x=m-4 a(n) = round((x^3+9*x^2+(32-9*(x%2))*x)/48+0.6)+2*floor((m-1)^2/4)+7*floor(m/2)+9
Formula
With m = n-4 and x = m-4, a(n) = <(x^3 +9x^2 +(32-9(x mod 2))x)/48 +0.6> + 2floor((m-1)^2/4) + 7floor(m/2) + 9. Empirically for n odd a(n) = (n^3 +9n^2 -n +87)/48 Empirically for n even a(n) = (n^3 +9n^2 +8n +192-n%4*6)/48.
Empirical g.f.: -x^7*(16*x^7-23*x^6-9*x^5+18*x^4-17*x^3+24*x^2+8*x-18) / ((x-1)^4*(x+1)^2*(x^2+1)). [Colin Barker, Feb 18 2013]
Comments