A141785 Primes of the form -x^2 + 5*x*y + 5*y^2 (as well as of the form 9*x^2 + 15*x*y + 5*y^2).
5, 11, 29, 41, 59, 71, 89, 101, 131, 149, 179, 191, 239, 251, 269, 281, 311, 359, 389, 401, 419, 431, 449, 461, 479, 491, 509, 521, 569, 599, 641, 659, 701, 719, 761, 809, 821, 839, 881, 911, 929, 941, 971, 1019, 1031, 1049, 1061, 1091, 1109, 1151, 1181, 1229, 1259
Offset: 1
Keywords
Examples
a(2) = 29 because we can write 29 = -1^2 + 5*1*2 + 5*2^2 (or 29 = 9*1^2 + 15*1*1 + 5*1^2)
References
- Z. I. Borevich and I. R. Shafarevich, Number Theory.
Links
- Juan Arias-de-Reyna, Table of n, a(n) for n = 1..10000
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS: Index to related sequences, programs, references. OEIS wiki, June 2014.
- D. B. Zagier, Zetafunktionen und quadratische Körper, Springer, 1981.
Crossrefs
Programs
-
Mathematica
Select[Prime[Range[250]], # == 5 || MatchQ[Mod[#, 45], Alternatives[11, 14, 26, 29, 41, 44]]&] (* Jean-François Alcover, Oct 28 2016 *)
Comments