This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A142073 #17 May 27 2024 07:16:19 %S A142073 1,1,-1,1,-1,1,1,-4,2,1,7,-16,8,1,21,-28,-26,48,-16,1,51,32,-356,408, %T A142073 -136,1,113,492,-1774,1072,912,-1088,272,1,239,2592,-5008,-6656,20736, %U A142073 -15872,3968,1,493,10628,-50,-94432,154528,-57856,-45056,39680,-7936,1,1003,38768,108820,-621352,455608,848384,-1538816,884480,-176896 %N A142073 Irregular triangle, T(n, k) = coefficients of p(x, n), where p(x, n) = (1-2*x)^(n+1) * Sum_{j>=0} j^n*(x/(1-x))^j, read by rows. %C A142073 Except for n=0, the row sums are zero. %H A142073 G. C. Greubel, <a href="/A142073/b142073.txt">Rows n = 0..50 of the irregular triangle, flattened</a> %F A142073 T(n, k) = [x^k]( p(x, n) ), where p(x, n) = (1-2*x)^(n+1) * Sum_{j>=0} j^n*(x/(1-x))^j, or p(x, n) = (1-2*x)^(n+1)*PolyLog(-n, x/(1-x))/x. %F A142073 T(n, k) = [x^k]( f(x, n) ), where f(x, n) = Sum_{j=0..n} Eulerian(n, j)*(x-1)^j. - Mourad Rahmani (mrahmani(AT)usthb.dz), Aug 29 2010 %e A142073 Irregular triangle begins as: %e A142073 1; %e A142073 1, -1; %e A142073 1, -1; %e A142073 1, 1, -4, 2; %e A142073 1, 7, -16, 8; %e A142073 1, 21, -28, -26, 48, -16; %e A142073 1, 51, 32, -356, 408, -136; %e A142073 1, 113, 492, -1774, 1072, 912, -1088, 272; %e A142073 1, 239, 2592, -5008, -6656, 20736, -15872, 3968; %e A142073 1, 493, 10628, -50, -94432, 154528, -57856, -45056, 39680, -7936; %t A142073 p[x_, n_]= If[n==0, 1, (1-2*x)^(n+1)*Sum[k^n*(x/(1-x))^k, {k,0, Infinity}]/x]; %t A142073 Table[CoefficientList[p[x,n], x], {n,0,12}]//Flatten %o A142073 (Magma) %o A142073 m:=12; %o A142073 R<x>:=PowerSeriesRing(Integers(), m+2); %o A142073 b:= func< n | n eq 0 select 0 else 2*Floor((n+1)/2) -1 >; %o A142073 Eulerian:= func< n,k | (&+[(-1)^j*Binomial(n+1,j)*(k-j)^n: j in [0..k]]) >; %o A142073 p:= func< n,x | (&+[Eulerian(n,j)*(x-1)^j: j in [0..n]]) >; %o A142073 T:= func< n,k | Coefficient(R!( p(n,x) ), k) >; %o A142073 [T(n,n-k): k in [0..b(n)], n in [0..m]]; // _G. C. Greubel_, May 26 2024 %o A142073 (SageMath) %o A142073 m=12 %o A142073 def b(n): return 2*int((n+1)/2) - 1 + int(n==0) %o A142073 def Eulerian(n, k): return sum((-1)^j*binomial(n+1, j)*(k-j)^n for j in range(k+1)) %o A142073 def p(x,n): return sum(Eulerian(n,j)*(x-1)^j for j in range(n+1)) %o A142073 def T(n,k): return ( p(x,n) ).series(x, n+1).list()[k] %o A142073 flatten([[T(n,n-k) for k in range(b(n)+1)] for n in range(m+1)]) # _G. C. Greubel_, May 26 2024 %Y A142073 Cf. A008292, A141720. %K A142073 sign,tabf %O A142073 0,8 %A A142073 _Roger L. Bagula_ and _Gary W. Adamson_, Sep 15 2008 %E A142073 Edited by _G. C. Greubel_, May 26 2024