This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A142075 #15 Sep 08 2022 08:45:35 %S A142075 1,1,2,1,8,4,1,22,44,8,1,52,264,208,16,1,114,1208,2416,912,32,1,240, %T A142075 4764,19328,19056,3840,64,1,494,17172,124952,249904,137376,15808,128, %U A142075 1,1004,58432,705872,2499040,2823488,934912,64256,256,1,2026,191360,3641536,20965664,41931328,29132288,6123520,259328,512 %N A142075 Triangle T(n, k) = 2^(k-1) * E(n, k-1) where E(n,k) are the Eulerian numbers A173018, read by rows. %C A142075 Same as A156365, except for the additional a(0) = 1 there. %H A142075 G. C. Greubel, <a href="/A142075/b142075.txt">Rows n = 1..50 of the triangle, flattened</a> %F A142075 G.f.: 1/x/Q(0) -1/x, where Q(k) = 1 - x*(k+1)/( 1 - y*2*x*(k+1)/Q(k+1) ); (continued fraction). - _Sergei N. Gladkovskii_, Dec 17 2013 %F A142075 Sum_{k=1..n} T(n, k) = A000670(n), for n >= 1. - _G. C. Greubel_, Jun 07 2021 %e A142075 Triangle begins as: %e A142075 1; %e A142075 1, 2; %e A142075 1, 8, 4; %e A142075 1, 22, 44, 8; %e A142075 1, 52, 264, 208, 16; %e A142075 1, 114, 1208, 2416, 912, 32; %e A142075 1, 240, 4764, 19328, 19056, 3840, 64; %e A142075 1, 494, 17172, 124952, 249904, 137376, 15808, 128; %e A142075 1, 1004, 58432, 705872, 2499040, 2823488, 934912, 64256, 256; %e A142075 ... %t A142075 (* First program *) %t A142075 p[x_, n_]= (1-2*x)^(n+1)*PolyLog[-n, 2*x]/(2*x); %t A142075 Table[CoefficientList[p[x, n], x], {n,12}]//Flatten %t A142075 (* Second program *) %t A142075 Eulerian[n_, k_]:= Sum[(-1)^j*Binomial[n+1, j]*(k-j+1)^n, {j, 0, k+1}]; %t A142075 Table[2^(k-1)*Eulerian[n, k-1], {n,12}, {k,n}]//Flatten (* _G. C. Greubel_, Jun 07 2021 *) %o A142075 (Magma) %o A142075 Eulerian:= func< n,k | (&+[(-1)^j*Binomial(n+1,j)*(k-j+1)^n: j in [0..k+1]]) >; %o A142075 [2^(k-1)*Eulerian(n,k-1): k in [1..n], n in [1..12]]; // _G. C. Greubel_, Jun 07 2021 %o A142075 (Sage) %o A142075 def Eulerian(n,k): return sum((-1)^j*binomial(n+1,j)*(k-j+1)^n for j in (0..k+1)) %o A142075 flatten([[2^(k-1)*Eulerian(n,k-1) for k in (1..n)] for n in (1..12)]) # _G. C. Greubel_, Jun 07 2021 %Y A142075 Essentially the same as A156365. %Y A142075 Cf. A000670, A008292, A123125, A173018. %K A142075 nonn,tabl %O A142075 1,3 %A A142075 _Roger L. Bagula_ and _Gary W. Adamson_, Sep 15 2008 %E A142075 Edited and new name by _Joerg Arndt_, Dec 30 2018