cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A142338 Nonprimes of the form (p(2*n)-p(n))/4, where p(n)=n-th prime.

Original entry on oeis.org

1, 6, 12, 15, 16, 20, 24, 27, 33, 39, 42, 45, 45, 50, 52, 54, 55, 63, 63, 66, 70, 70, 70, 78, 81, 84, 86, 102, 105, 108, 110, 115, 117, 117, 118, 121, 121, 132, 133, 138, 141, 146, 148, 150, 156, 158, 165, 168, 168, 171, 180, 180, 182, 198, 203, 205, 205, 210, 210
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Sep 18 2008

Keywords

Comments

Terms are in order of n. The sequence has repetitions and is not monotonic: e.g. a(71) = 249 and a(72) = 248. - Robert Israel, Nov 09 2020

Examples

			If n=2, then (p(2*2)-p(2))/4=(7-3)/4=1=a(1).
If n=6, then (p(2*6)-p(6))/4=(37-13)/4=6=a(2).
If n=11, then (p(2*11)-p(11))/4=(79-31)/4=12=a(3).
If n=13, then (p(2*13)-p(13))/4=(101-41)/4=15=a(4).
If n=14, then (p(2*14)-p(14))/4=(107-43)/4=16=a(5), etc.
		

Crossrefs

Programs

  • Maple
    q:= 1: p:= 1: count:= 0: R:= NULL:
    while count < 100 do
      q:= nextprime(q); p:= nextprime(nextprime(p));
      v:= (p-q)/4;
      if v::integer and not isprime(v) then count:= count+1; R:= R, v fi
    od:
    R; # Robert Israel, Nov 09 2020

Extensions

59 and 87 removed by R. J. Mathar, Oct 04 2008