cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A142465 Triangle T(n,m) read by rows: T(n,m) = Product_{i=0..5} binomial(n+i,m)/binomial(m+i,m).

This page as a plain text file.
%I A142465 #32 Nov 14 2022 00:36:37
%S A142465 1,1,1,1,7,1,1,28,28,1,1,84,336,84,1,1,210,2520,2520,210,1,1,462,
%T A142465 13860,41580,13860,462,1,1,924,60984,457380,457380,60984,924,1,1,1716,
%U A142465 226512,3737448,9343620,3737448,226512,1716,1,1,3003,736164,24293412,133613766,133613766,24293412,736164,3003,1
%N A142465 Triangle T(n,m) read by rows: T(n,m) = Product_{i=0..5} binomial(n+i,m)/binomial(m+i,m).
%C A142465 Triangle of generalized binomial coefficients (n,k)_6; cf. A342889. - _N. J. A. Sloane_, Apr 03 2021
%C A142465 The matrix inverse starts
%C A142465          1;
%C A142465         -1,       1;
%C A142465          6,      -7,       1
%C A142465       -141,     168,     -28,     1;
%C A142465       9911,  -11844,    2016,   -84,    1;
%C A142465   -1740901, 2081310, -355320, 15120, -210,   1. - _R. J. Mathar_, Mar 22 2013
%H A142465 Seiichi Manyama, <a href="/A142465/b142465.txt">Rows n = 0..139, flattened</a>
%H A142465 Johann Cigler, <a href="https://arxiv.org/abs/2103.01652">Pascal triangle, Hoggatt matrices, and analogous constructions</a>, arXiv:2103.01652 [math.CO], 2021.
%H A142465 Johann Cigler, <a href="https://www.researchgate.net/publication/349376205_Some_observations_about_Hoggatt_triangles">Some observations about Hoggatt triangles</a>, Universität Wien (Austria, 2021).
%F A142465 T(n,m) = A056941(n,m)*binomial(n+5,m)/binomial(m+5,m).
%F A142465 Sum_{k=0..n} T(n, k) = A005364(n).
%e A142465 Triangle begins as:
%e A142465   1;
%e A142465   1,    1;
%e A142465   1,    7,      1;
%e A142465   1,   28,     28,        1;
%e A142465   1,   84,    336,       84,         1;
%e A142465   1,  210,   2520,     2520,       210,         1;
%e A142465   1,  462,  13860,    41580,     13860,       462,        1;
%e A142465   1,  924,  60984,   457380,    457380,     60984,      924,      1;
%e A142465   1, 1716, 226512,  3737448,   9343620,   3737448,   226512,   1716,    1;
%e A142465   1, 3003, 736164, 24293412, 133613766, 133613766, 24293412, 736164, 3003, 1;
%p A142465 A142465 := proc(n,m)
%p A142465     mul(binomial(n+i,m)/binomial(m+i,m),i=0..5) ;
%p A142465 end proc; # _R. J. Mathar_, Mar 22 2013
%t A142465 T[n_, k_]:= Product[Binomial[n+j, k]/Binomial[k+j, k], {j,0,5}];
%t A142465 Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten
%o A142465 (PARI) T(n, k) = prod(j=0, 5, binomial(n+j, k)/binomial(k+j, k)); \\ _Seiichi Manyama_, Apr 01 2021
%o A142465 (Magma)
%o A142465 A142465:= func< n,k | (&*[Binomial(n+j,k)/Binomial(k+j,k): j in [0..5]]) >;
%o A142465 [A142465(n,k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Nov 13 2022
%o A142465 (SageMath)
%o A142465 def A142465(n,k): return product(binomial(n+j,k)/binomial(k+j,k) for j in (0..5))
%o A142465 flatten([[A142465(n,k) for k in range(n+1)] for n in range(13)]) # _G. C. Greubel_, Nov 13 2022
%Y A142465 Cf. A001263, A005364 (row sums), A056941, A056940, A056939, A142467.
%Y A142465 Triangles of generalized binomial coefficients (n,k)_m (or generalized Pascal triangles) for m = 1,...,12: A007318 (Pascal), A001263, A056939, A056940, A056941, A142465, A142467, A142468, A174109, A342889, A342890, A342891.
%K A142465 nonn,easy,tabl
%O A142465 0,5
%A A142465 _Roger L. Bagula_, Sep 20 2008, Jan 28 2009
%E A142465 Edited by the Associate Editors of the OEIS, May 17 2009