cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A142467 Triangle T(n,m) read by rows: T(n,m) = Product_{i=0..6} binomial(n+i,m)/binomial(m+i,m).

This page as a plain text file.
%I A142467 #26 Nov 14 2022 04:58:38
%S A142467 1,1,1,1,8,1,1,36,36,1,1,120,540,120,1,1,330,4950,4950,330,1,1,792,
%T A142467 32670,108900,32670,792,1,1,1716,169884,1557270,1557270,169884,1716,1,
%U A142467 1,3432,736164,16195608,44537922,16195608,736164,3432,1
%N A142467 Triangle T(n,m) read by rows: T(n,m) = Product_{i=0..6} binomial(n+i,m)/binomial(m+i,m).
%C A142467 Triangle of generalized binomial coefficients (n,k)_7; cf. A342889. - _N. J. A. Sloane_, Apr 03 2021
%H A142467 Seiichi Manyama, <a href="/A142467/b142467.txt">Rows n = 0..139, flattened</a>
%H A142467 Johann Cigler, <a href="https://arxiv.org/abs/2103.01652">Pascal triangle, Hoggatt matrices, and analogous constructions</a>, arXiv:2103.01652 [math.CO], 2021.
%H A142467 Johann Cigler, <a href="https://www.researchgate.net/publication/349376205_Some_observations_about_Hoggatt_triangles">Some observations about Hoggatt triangles</a>, Universität Wien (Austria, 2021).
%F A142467 T(n,m) = A142465(n,m)*binomial(n+6,m)/binomial(m+6,m).
%F A142467 Sum_{k=0..n} T(n, k) = A005365(n).
%e A142467 Triangle begins as:
%e A142467   1;
%e A142467   1,     1;
%e A142467   1,     8,       1;
%e A142467   1,    36,      36,         1;
%e A142467   1,   120,     540,       120,         1;
%e A142467   1,   330,    4950,      4950,       330,         1;
%e A142467   1,   792,   32670,    108900,     32670,       792,         1;
%e A142467   1,  1716,  169884,   1557270,   1557270,    169884,      1716,       1;
%e A142467   1,  3432,  736164,  16195608,  44537922,  16195608,    736164,    3432,    1;
%e A142467   1,  6435, 2760615, 131589315, 868489479, 868489479, 131589315, 2760615, 6435, 1;
%t A142467 T[n_, k_]:= Product[Binomial[n+j, k]/Binomial[k+j, k], {j,0,6}];
%t A142467 Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* modified by _G. C. Greubel_, Nov 13 2022 *)
%o A142467 (PARI) T(n, k) = prod(j=0, 6, binomial(n+j, k)/binomial(k+j, k)); \\ _Seiichi Manyama_, Apr 01 2021
%o A142467 (Magma) [(&*[Binomial(n+j,k)/Binomial(k+j,k): j in [0..6]]): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Nov 13 2022
%o A142467 (SageMath)
%o A142467 def A142467(n,k): return product(binomial(n+j,k)/binomial(k+j,k) for j in (0..6))
%o A142467 flatten([[A142467(n,k) for k in range(n+1)] for n in range(13)]) # _G. C. Greubel_, Nov 13 2022
%Y A142467 Cf. A001263, A005365 (row sums), A056939, A056940, A056941.
%Y A142467 Triangles of generalized binomial coefficients (n,k)_m (or generalized Pascal triangles) for m = 1,...,12: A007318 (Pascal), A001263, A056939, A056940, A056941, A142465, A142467, A142468, A174109, A342889, A342890, A342891.
%K A142467 nonn,easy,tabl
%O A142467 0,5
%A A142467 _Roger L. Bagula_, Sep 20 2008
%E A142467 Edited by the Associate Editors of the OEIS, May 17 2009