This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A142472 #10 Apr 03 2021 03:08:17 %S A142472 1,-4,1,21,-18,1,-140,240,-48,1,1140,-3150,1300,-100,1,-11004,43620, %T A142472 -29700,4800,-180,1,123074,-650769,647780,-175175,13965,-294,1, %U A142472 -1566928,10517108,-14190400,5676160,-764400,34496,-448,1,22390488,-184052520,319680732,-175091112,35160048,-2698920,75600,-648,1 %N A142472 Triangle T(n, k) = binomial(n, k) * Sum_{j=k..n} StirlingS1(n, j)*StirlingS1(j, k), read by rows. %C A142472 Row sums are: 1, -3, 4, 53, -809, 7537, -41418, -294411, 15463669, -352665269, .... %H A142472 G. C. Greubel, <a href="/A142472/b142472.txt">Rows n = 1..50 of the triangle, flattened</a> %F A142472 T(n, k) = binomial(n, k) * Sum_{j=k..n} StirlingS1(n, j)*StirlingS1(j, k). %e A142472 The triangle begins as: %e A142472 1; %e A142472 -4, 1; %e A142472 21, -18, 1; %e A142472 -140, 240, -48, 1; %e A142472 1140, -3150, 1300, -100, 1; %e A142472 -11004, 43620, -29700, 4800, -180, 1; %e A142472 123074, -650769, 647780, -175175, 13965, -294, 1; %e A142472 -1566928, 10517108, -14190400, 5676160, -764400, 34496, -448, 1; %e A142472 22390488, -184052520, 319680732, -175091112, 35160048, -2698920, 75600, -648, 1; %p A142472 A142472:= (n,k)-> binomial(n,k)*add(Stirling1(n,j)*Stirling1(j,k), j=k..n); %p A142472 seq(seq(A142472(n,k), k=1..n), n=1..12); # _G. C. Greubel_, Apr 02 2021 %t A142472 T[n_, k_]:= Binomial[n, k]*Sum[StirlingS1[n, j]*StirlingS1[j, k], {j, k, n}]; %t A142472 Table[T[n, k], {n,12}, {k,n}]//Flatten (* modified by _G. C. Greubel_, Apr 02 2021 *) %o A142472 (Magma) %o A142472 A142472:= func< n,k | Binomial(n,k)*(&+[StirlingFirst(n,j)*StirlingFirst(j,k): j in [k..n]]) >; %o A142472 [A142472(n,k): k in [1..n], n in [1..12]]; // _G. C. Greubel_, Apr 02 2021 %o A142472 (Sage) %o A142472 def A142472(n,k): return (-1)^(n-k)*binomial(n,k)*sum( stirling_number1(n, j)*stirling_number1(j, k) for j in (k..n) ) %o A142472 flatten([[A142472(n,k) for k in (1..n)] for n in (1..12)]) # _G. C. Greubel_, Apr 02 2021 %Y A142472 Cf. A008275, A039814. %K A142472 sign,tabl %O A142472 1,2 %A A142472 _Roger L. Bagula_ and _Gary W. Adamson_, Sep 22 2008 %E A142472 Edited by _N. J. A. Sloane_, Sep 26 2008