cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A142590 First trisection of A061037 (Balmer line series of the hydrogen atom).

This page as a plain text file.
%I A142590 #21 Sep 11 2022 06:21:33
%S A142590 0,21,15,117,12,285,99,525,42,837,255,1221,90,1677,483,2205,156,2805,
%T A142590 783,3477,240,4221,1155,5037,342,5925,1599,6885,462,7917,2115,9021,
%U A142590 600,10197,2703,11445,756,12765,3363,14157,930,15621,4095,17157,1122,18765,4899,20445
%N A142590 First trisection of A061037 (Balmer line series of the hydrogen atom).
%C A142590 All terms are multiples of 3.
%H A142590 G. C. Greubel, <a href="/A142590/b142590.txt">Table of n, a(n) for n = 0..5000</a>
%H A142590 <a href="/index/Rec#order_12">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,3,0,0,0,-3,0,0,0,1).
%F A142590 a(n) = A061037(2+3n).
%F A142590 a(n) mod 9 = 3*A010872(n).
%F A142590 G.f.: 3*x*(-15*x^8 -18*x^5 -74*x^4 -39*x^2 -5*x-7 -4*x^3 +x^10 -2*x^7 -x^9 -58*x^6)/ ((x-1)^3*(1+x)^3*(x^2+1)^3). - _R. J. Mathar_, Sep 22 2008
%F A142590 a(n) = 3*n*(3*n+4)*(37-27*cos(n*Pi)-6*cos(n*Pi/2))/64. - _Luce ETIENNE_, Mar 31 2017
%F A142590 Sum_{n>=1} 1/a(n) = 5/4 - 5*Pi/(48*sqrt(3)) - 11*log(3)/16. - _Amiram Eldar_, Sep 11 2022
%t A142590 Table[Numerator[1/4 - 1/#^2] &[2 + 3 n], {n, 0, 47}] (* _Michael De Vlieger_, Apr 02 2017 *)
%t A142590 CoefficientList[Series[3*x*(-15*x^8 -18*x^5 -74*x^4 -39*x^2 -5*x-7 -4*x^3 +x^10 -2*x^7 -x^9 -58*x^6)/ ((x-1)^3*(1+x)^3*(x^2+1)^3), {x, 0, 50}], x] (* _G. C. Greubel_, Sep 19 2018 *)
%o A142590 (PARI) my(x='x+O('x^50)); concat([0], Vec(3*x*(-15*x^8 -18*x^5 -74*x^4 -39*x^2 -5*x-7 -4*x^3 +x^10 -2*x^7 -x^9 -58*x^6)/((x-1)^3*(1+x)^3*(x^2+1)^3))) \\ _G. C. Greubel_, Sep 19 2018
%o A142590 (Magma) m:=25; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(3*x*(-15*x^8 -18*x^5 -74*x^4 -39*x^2 -5*x-7 -4*x^3 +x^10 -2*x^7 -x^9 -58*x^6)/((x-1)^3*(1+x)^3*(x^2+1)^3))); // _G. C. Greubel_, Sep 19 2018
%Y A142590 Cf. A010872, A061037.
%K A142590 nonn,easy
%O A142590 0,2
%A A142590 _Paul Curtz_, Sep 22 2008
%E A142590 Edited and extended by _R. J. Mathar_, Sep 22 2008