This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A142596 #8 Apr 14 2021 06:29:19 %S A142596 1,1,1,1,6,1,1,21,21,1,1,66,126,66,1,1,201,576,576,201,1,1,606,2331, %T A142596 3456,2331,606,1,1,1821,8811,17361,17361,8811,1821,1,1,5466,31896, %U A142596 78516,104166,78516,31896,5466,1,1,16401,112086,331236,548046,548046,331236,112086,16401,1 %N A142596 Triangle T(n, k) = T(n-1, k-1) + 3*T(n-1, k) + 2*T(n-1, k-1), with T(n,1) = T(n, n) = 1, read by rows. %H A142596 G. C. Greubel, <a href="/A142596/b142596.txt">Rows n = 1..50 of the triangle, flattened</a> %F A142596 T(n, k) = T(n-1, k-1) + 3*T(n-1, k) + 2*T(n-1, k-1), with T(n,1) = T(n, n) = 1. %F A142596 Sum_{k=1..n} T(n, k) = (6^(n-1) + 4)/5 = A047851(n-1). - _G. C. Greubel_, Apr 13 2021 %e A142596 The triangle begins as: %e A142596 1; %e A142596 1, 1; %e A142596 1, 6, 1; %e A142596 1, 21, 21, 1; %e A142596 1, 66, 126, 66, 1; %e A142596 1, 201, 576, 576, 201, 1; %e A142596 1, 606, 2331, 3456, 2331, 606, 1; %e A142596 1, 1821, 8811, 17361, 17361, 8811, 1821, 1; %e A142596 1, 5466, 31896, 78516, 104166, 78516, 31896, 5466, 1; %e A142596 1, 16401, 112086, 331236, 548046, 548046, 331236, 112086, 16401, 1; %t A142596 T[n_, k_]:= T[n,k]= If[k==1 || k==n, 1, T[n-1, k-1] +3*T[n-1, k] +2*T[n-1, k-1]]; %t A142596 Table[T[n, k], {n, 10}, {k, n}]//Flatten (* modified by _G. C. Greubel_, Apr 13 2021 *) %o A142596 (Magma) %o A142596 function T(n,k) %o A142596 if k eq 1 or k eq n then return 1; %o A142596 else return T(n-1, k-1) + 3*T(n-1, k) + 2*T(n-1, k-1); %o A142596 end if; return T; %o A142596 end function; %o A142596 [T(n,k): k in [1..n], n in [1..12]]; // _G. C. Greubel_, Apr 13 2021 %o A142596 (Sage) %o A142596 @CachedFunction %o A142596 def T(n,k): return 1 if k==1 or k==n else T(n-1, k-1) + 3*T(n-1, k) + 2*T(n-1, k-1) %o A142596 flatten([[T(n,k) for k in (1..n)] for n in (1..12)]) # _G. C. Greubel_, Apr 13 2021 %Y A142596 Cf. A008292, A047851, A060187, A119258. %K A142596 nonn,tabl %O A142596 1,5 %A A142596 _Roger L. Bagula_, Sep 22 2008 %E A142596 Edited by _G. C. Greubel_, Apr 13 2021