This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A142706 #10 Feb 07 2023 12:43:13 %S A142706 1,4,2,11,22,3,26,132,78,4,57,604,906,228,5,120,2382,7248,4764,600,6, %T A142706 247,8586,46857,62476,21465,1482,7,502,29216,264702,624760,441170, %U A142706 87648,3514,8,1013,95680,1365576,5241416,6551770,2731152,334880,8104,9 %N A142706 Coefficients of the derivatives of the Eulerian polynomials (with indexing as in A173018). %F A142706 Let E(n, x) = Sum_{j=0..k} A173018(n, k)*x^k and E'(n, x) = (d/dx) E(x, n). Then T(n, k) = [x^(k-1)] E'(n+1, x). %e A142706 Triangle T(n, k) starts: %e A142706 { 1}; %e A142706 { 4, 2}; %e A142706 { 11, 22, 3}; %e A142706 { 26, 132, 78, 4}; %e A142706 { 57, 604, 906, 228, 5}; %e A142706 { 120, 2382, 7248, 4764, 600, 6}; %e A142706 { 247, 8586, 46857, 62476, 21465, 1482, 7}; %e A142706 { 502, 29216, 264702, 624760, 441170, 87648, 3514, 8}; %e A142706 {1013, 95680, 1365576, 5241416, 6551770, 2731152, 334880, 8104, 9}. %p A142706 T := (n, k) -> k * combinat:-eulerian1(n+1, k): %p A142706 for n from 1 to 9 do seq(T(n, k), k = 1..n) od; # _Peter Luschny_, Feb 07 2023 %t A142706 T[n_, k_] := Sum[(-1)^j Binomial[n + 1, j](k + 1 - j)^n, {j, 0, k + 1}]; %t A142706 Table[D[Sum[T[n, k]*x^k, {k, 0, n - 1}], x], {n, 1, 10}]; %t A142706 Table[CoefficientList[D[Sum[T[n, k]*x^k, {k, 0, n - 1}], x], x], {n, 1, 10}]; %t A142706 Flatten[%] %t A142706 (* Alternative: *) Needs["Combinatorica`"] %t A142706 Flatten[Table[k*Eulerian[n+1, k], {n, 1, 9}, {k, 1, n}]] (* _Peter Luschny_, Feb 07 2023 *) %Y A142706 Cf. A173018, A001286 (row sums). %K A142706 nonn,tabl %O A142706 1,2 %A A142706 _Roger L. Bagula_ and _Gary W. Adamson_, Sep 24 2008 %E A142706 Edited by _Peter Luschny_, Feb 07 2023