A142955 Primes of the form 3*x^2 + 4*x*y - 5*y^2 (as well as of the form 3*x^2 + 10*x*y + 2*y^2).
2, 3, 19, 31, 59, 67, 71, 79, 103, 107, 127, 151, 167, 179, 211, 223, 227, 307, 331, 379, 383, 431, 439, 487, 523, 547, 563, 599, 607, 659, 683, 743, 751, 787, 811, 827, 839, 863, 887, 907, 911, 971, 983, 991, 1019, 1039, 1063, 1091, 1123, 1171, 1231, 1283
Offset: 1
Keywords
Examples
a(4) = 31 because we can write 31 = 3*3^2 + 4*3*2 - 5*2^2 (or 31 = 3*1^2 + 10*1*2 + 2*2^2).
References
- Z. I. Borevich and I. R. Shafarevich, Number Theory.
Links
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS: Index to related sequences, programs, references. OEIS wiki, June 2014.
- D. B. Zagier, Zetafunktionen und quadratische Körper, Springer, 1981.
Crossrefs
Extensions
More terms from Colin Barker, Apr 05 2015
Edited by M. F. Hasler, Feb 18 2022
Comments