This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A142962 #25 Jul 02 2023 09:08:49 %S A142962 4,26,81,184,350,594,931,1376,1944,2650,3509,4536,5746,7154,8775, %T A142962 10624,12716,15066,17689,20600,23814,27346,31211,35424,40000,44954, %U A142962 50301,56056,62234,68850,75919,83456,91476,99994,109025,118584,128686,139346,150579 %N A142962 Scaled convolution of (n^3)*A000984(n) with A000984(n). %C A142962 S(3,n) := Sum_{j=0..n} j^3*binomial(2*j,j)*binomial(2*(n-j),n-j). %C A142962 a(n) = 2^3*S(3,n)/4^n, n >= 1. %C A142962 O.g.f. for S(3,n) is G(k=3,x). See triangle A142963 for the general G(k,x) formula. %C A142962 The author was led to compute such sums by a question asked by M. Greiter, Jun 27 2008. %H A142962 Vincenzo Librandi, <a href="/A142962/b142962.txt">Table of n, a(n) for n = 1..1000</a> %F A142962 a(n) = n^2*(3+5*n)/2. %F A142962 a(n) = (2^3)*S(3,n)/4^n with the convolution S(3,n) defined above. %F A142962 G.f.: x*(4+10*x+x^2)/(1-x)^4. - _Joerg Arndt_, Jul 02 2023 %t A142962 Rest@ CoefficientList[Series[x (4 + 10 x + x^2)/(1 - x)^4, {x, 0, 39}], x] (* _Michael De Vlieger_, Jul 02 2023 *) %Y A142962 Cf. A142961 triangle: row k=3: [3, 5], with the row polynomial 3+5*n. %Y A142962 Cf. A049451 (scaled k=2 case). %K A142962 nonn,easy %O A142962 1,1 %A A142962 _Wolfdieter Lang_, Sep 15 2008