cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A142966 Fourth column (m=3) of triangle A142963 divided by 8.

Original entry on oeis.org

1, 58, 877, 8030, 56285, 335162, 1792749, 8904486, 41949645, 190129090, 837258109, 3607669966, 15289404989, 63975698570, 265065915725, 1089837752118, 4454225465325, 18119738464530, 73441531708765, 296814738679390, 1196884383319261, 4817845684107098
Offset: 0

Views

Author

Wolfdieter Lang, Sep 15 2008

Keywords

Crossrefs

Cf. A142963.
Column m=2: 4*A142965.
From Johannes W. Meijer, Feb 20 2009: (Start)
Cf. A156925.
Equals A156920(n+3,3).
Equals A156919(n+3,3)/2^n.
(End)

Formula

a(n) = A142963(n+4,3)/8.
From Johannes W. Meijer, Feb 20 2009: (Start)
a(n) = 20a(n-1) - 175*a(n-2) + 882*a(n-3) - 2835*a(n-4) + 6072*a(n-5) - 8777*a(n-6) + 8458*a(n-7) - 5204*a(n-8) + 1848*a(n-9) - 288*a(n-10).
a(n) = -(105/2) - (143/3)*n - 14*n^2 - (4/3)*n^3 + 756*2^n + 48*2^n*n^2 + 384*2^n*n - (3645/2)*3^n - 405*3^n*n + 1120*4^n.
G.f.: (1 + 38*z - 108*z^2 - 242*z^3 + 839*z^4 - 444*z^5 - 180*z^6)/((1-z)^4*(1-2*z)^3*(1-3*z)^2*(1-4*z)).
(End)