This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A142982 #33 Dec 12 2024 09:27:16 %S A142982 1,9,85,846,8974,101916,1240308,16156656,224789616,3331795680, %T A142982 52465122720,875333381760,15432978107520,286828144485120, %U A142982 5606317009440000,114993185594112000,2470155824763648000,55464433059571200000,1299510384759562752000,31718253797341267968000 %N A142982 a(1) = 1, a(2) = 9, a(n+2) = 9*a(n+1) + (n + 1)^2*a(n). %C A142982 This is the case m = 4 of the more general recurrence a(1) = 1, a(2) = 2*m + 1, a(n+2) = (2*m + 1)*a(n+1) + (n + 1)^2*a(n), which arises when accelerating the convergence of Mercator's series for the constant log(2). See A142979 for remarks on the general case. %D A142982 Bruce C. Berndt, Ramanujan's Notebooks Part II, Springer-Verlag. %H A142982 Seiichi Manyama, <a href="/A142982/b142982.txt">Table of n, a(n) for n = 1..446</a> %F A142982 a(n) = n!*p(n)*Sum_{k = 1..n} (-1)^(k+1)/(k*p(k-1)*p(k)), where p(n) = (2*n^4 + 4*n^3 + 10*n^2 + 8*n + 3)/3 = A001846(n) is the Ehrhart polynomial for the 4-dimensional cross polytope (the 16-cell). %F A142982 Recurrence: a(1) = 1, a(2) = 9, a(n+2) = 9*a(n+1) + (n + 1)^2*a(n). %F A142982 The sequence b(n) := n!*p(n) satisfies the same recurrence with b(1) = 9, b(2) = 82. %F A142982 Hence we obtain the finite continued fraction expansion a(n)/b(n) = 1/(9 + 1^2/(9 + 2^2/(9 + 3^2/(9 + ... + (n-1)^2/9)))), for n >= 2. %F A142982 The behavior of a(n) for large n is given by limit_{n -> oo} a(n)/b(n) = Sum_{k >= 1} (-1)^(k+1)/(k*p(k-1)*p(k)) = 1/(9 + 1^2/(9 + 2^2/(9 + 3^2/(9 + ... + n^2/(9 + ...))))) = log(2) - (1 - 1/2 + 1/3 - 1/4); the final equality follows by a result of Ramanujan (see [Berndt, Chapter 12, Entry 29]). %F A142982 Thus a(n) ~ c*n^4*n! as n -> oo, where c = (12*log(2) - 7)/18. %F A142982 E.g.f.: A(x) = (3*(x + 1)^4*log(1 + x) - 4*x^2*(2*x^2 + 2*x + 3))/(3*(1 - x)^5) satisfies the differential equation 1 + (x + 9)*A(x) + (x^2 - 1)*A'(x) = 0 with A(0) = 0. - _Peter Bala_, Dec 09 2024 %p A142982 p := n -> (2*n^4+4*n^3+10*n^2+8*n+3)/3: a := n -> n!*p(n)*sum ((-1)^(k+1)/(k*p(k-1)*p(k)), k = 1..n): seq(a(n), n = 1..20); %t A142982 Module[{a, n}, RecurrenceTable[{a[n+2] == 9*a[n+1] + (n+1)^2*a[n], a[1] == 1, a[2] == 9}, a, {n, 25}]] (* _Paolo Xausa_, Dec 12 2024 *) %Y A142982 Cf. A024167, A142979, A142980, A142981. %K A142982 easy,nonn %O A142982 1,2 %A A142982 _Peter Bala_, Jul 17 2008