cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A142989 a(1) = 1, a(2) = 5, a(n+2) = 5*a(n+1)+(n+1)*(n+3)*a(n).

This page as a plain text file.
%I A142989 #4 Jun 17 2013 17:58:27
%S A142989 1,5,33,240,1992,18360,187416,2093760,25462080,334592640,4728412800,
%T A142989 71488811520,1151817408000,19699405286400,356504125824000,
%U A142989 6805868977152000,136702533123072000,2881808345235456000
%N A142989 a(1) = 1, a(2) = 5, a(n+2) = 5*a(n+1)+(n+1)*(n+3)*a(n).
%C A142989 This is the case m = 1 of the general recurrence a(1) = 1, a(2) = 2*m+3, a(n+2) = (2*m+3)*a(n+1)+(n+1)*(n+3)*a(n), which arises when accelerating the convergence of a certain series for the constant log(2). For remarks on the general case see A142988 (m=0). For other cases see A142990 (m=2) and A142991 (m=3).
%H A142989 Harvey P. Dale, <a href="/A142989/b142989.txt">Table of n, a(n) for n = 1..447</a>
%F A142989 a(n) = (n+2)!*p(n+2)*sum {k = 1..n} (-1)^(k+1)/(k*(k+1)*(k+2)*p(k+1)*p(k+2)), where p(n) = (2*n-1)/3. Recurrence: a(1) = 1, a(2) = 5, a(n+2) = 5*a(n+1)+(n+1)*(n+3)*a(n). The sequence b(n) := 1/2*(n+2)!*p(n+2) satisfies the same recurrence with b(1) = 5, b(2) = 28. Hence we obtain the finite continued fraction expansion a(n)/b(n) = 1/(5+1*3/(5+2*4/(5+3*5/(5+...+(n-1)*(n+1)/5)))), for n >=2. Lim n -> infinity a(n)/b(n) = 1/(5+1*3/(5+2*4/(5+3*5/(5+...+(n-1)*(n+1)/(5+...))))) = 2*sum {k = 1..inf} (-1)^(k+1)/ (k*(k+1)*(k+2)*p(k+1)*p(k+2)) = 17/2-12*log(2).
%p A142989 p := n -> (2*n-1)/3: a := n -> (n+2)!*p(n+2)*sum ((-1)^(k+1)/(k*(k+1)*(k+2)*p(k+1)*p(k+2)), k = 1..n): seq(a(n), n = 1..20);
%t A142989 RecurrenceTable[{a[1]==1,a[2]==5,a[n]==5a[n-1]+(n-1)(n+1)a[n-2]},a,{n,20}] (* _Harvey P. Dale_, Jun 17 2013 *)
%Y A142989 Cf. A142979, A142983, A142988, A142990, A142991.
%K A142989 easy,nonn
%O A142989 1,2
%A A142989 _Peter Bala_, Jul 17 2008