cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A142990 a(1) = 1, a(2) = 7, a(n+2) = 7*a(n+1)+(n+1)*(n+3)*a(n).

This page as a plain text file.
%I A142990 #10 Sep 23 2021 01:26:06
%S A142990 1,7,57,504,4896,51912,598392,7459200,100085760,1439061120,
%T A142990 22083719040,360371773440,6232667212800,113901166310400,
%U A142990 2193425619840000,44398776748032000,942498015750144000,20938290999865344000
%N A142990 a(1) = 1, a(2) = 7, a(n+2) = 7*a(n+1)+(n+1)*(n+3)*a(n).
%C A142990 This is the case m = 2 of the general recurrence a(1) = 1, a(2) = 2*m+3, a(n+2) = (2*m+3)*a(n+1)+(n+1)*(n+3)*a(n), which arises when accelerating the convergence of a certain series for the constant log(2). For remarks on the general case see A142988 (m=0). For other cases see A142989 (m=1) and A142991 (m=3).
%H A142990 Seiichi Manyama, <a href="/A142990/b142990.txt">Table of n, a(n) for n = 1..446</a>
%F A142990 a(n) = (n+2)!*p(n+2)*sum {k = 1..n} (-1)^(k+1)/(k*(k+1)*(k+2)*p(k+1)*p(k+2)), where p(n) = (n^2-n+1)/3. Recurrence: a(1) = 1, a(2) = 7, a(n+2) = 7*a(n+1)+(n+1)*(n+3)*a(n). The sequence b(n) := 1/2*(n+2)!*p(n+2) satisfies the same recurrence with b(1) = 7, b(2) = 52. Hence we obtain the finite continued fraction expansion a(n)/b(n) = 1/(7+1*3/(7+2*4/(7+3*5/(7+...+(n-1)*(n+1)/7)))), for n >=2. Lim n -> infinity a(n)/b(n) = 1/(7+1*3/(7+2*4/(7+3*5/(7+...+(n-1)*(n+1)/(7+...))))) = 2*sum {k = 1..inf} (-1)^(k+1)/ (k*(k+1)*(k+2)*p(k+1)*p(k+2)) = 24*log(2)-33/2.
%p A142990 p := n -> (n^2-n+1)/3: a := n -> (n+2)!*p(n+2)*sum ((-1)^(k+1)/(k*(k+1)*(k+2)*p(k+1)*p(k+2)), k = 1..n): seq(a(n), n = 1..20);
%Y A142990 Cf. A142979, A142983, A142988, A142989, A142991.
%K A142990 easy,nonn
%O A142990 1,2
%A A142990 _Peter Bala_, Jul 17 2008