This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A143019 #8 Jul 27 2019 21:41:50 %S A143019 1,1,6,1,7,30,1,8,38,140,1,9,47,187,630,1,10,57,244,874,2772,1,11,68, %T A143019 312,1186,3958,12012,1,12,80,392,1578,5536,17548,51480,1,13,93,485, %U A143019 2063,7599,25147,76627,218790,1,14,107,592,2655,10254,35401,112028,330818 %N A143019 Infinite square array read by antidiagonals: a(q,n) is the coefficient of z^n in the series expansion of C(z)^q/(1-4z)^(3/2), where C(z) = (1-sqrt(1-4z))/(2z) is the Catalan function (q,n = 0,1,2,...). %C A143019 a(q,n) = a(q-1,n) + a(q+1,n-1). %C A143019 Row 0 is A002457; row 1 is A000531; row 2 is A029760; row 3 is A045720. %F A143019 a(q,n) = Sum_{i=0..n} 4^i*binomial(2n-2i+q, n-i). %e A143019 Array starts: %e A143019 1, 6, 30, 140, 630, ... %e A143019 1, 7, 38, 187, 874, ... %e A143019 1, 8, 47, 244, 1186, ... %e A143019 1, 9, 57, 312, 1578, ... %e A143019 ... %p A143019 a:=proc(q,n) options operator, arrow: sum(4^i*binomial(2*n-2*i+q, n-i), i= 0.. n) end proc: aa:=proc(q,n) options operator, arrow: a(q-1,n-1) end proc: matrix(10,10,aa); # yields sequence in matrix form %Y A143019 Cf. A002457, A000531, A029760, A045720. %K A143019 nonn,tabl %O A143019 0,3 %A A143019 _Emeric Deutsch_, Jul 24 2008