This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A143025 #34 Dec 12 2023 08:31:28 %S A143025 1,8,2,8,1,8,2,8,1,8,2,8,1,8,2,8,1,8,2,8,1,8,2,8,1,8,2,8,1,8,2,8,1,8, %T A143025 2,8,1,8,2,8,1,8,2,8,1,8,2,8,1,8,2,8,1,8,2,8,1,8,2,8,1,8,2,8,1,8,2,8, %U A143025 1,8,2,8,1,8,2,8,1,8,2,8,1,8,2,8,1,8 %N A143025 Period length 4: repeat [1, 8, 2, 8]. %C A143025 Numerator of 1/n^2-1/(3n)^2 if n>0. %C A143025 This can be generated from the transitions between principal quantum numbers n and 3n in the Hydrogen series: A005563(2), A061037(6), A061039(9), A061041(12), A061043(15), A061045(18), A061047(21), A061049(24),... (The mention of A005563(2) is somewhat a fluke to maintain the periodic pattern.) %C A143025 Related to the continued fraction of (12*sqrt(55)-72)/19 = 0.89444115.. = 0+1/(1+1/(8+1/(2+...))). - _R. J. Mathar_, Jun 27 2011 %H A143025 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,1). %F A143025 a(n+4) = a(n). %F A143025 G.f.: (1+8*x+2*x^2+8*x^3)/(1-x^4). %F A143025 From _Wesley Ivan Hurt_, Jul 10 2016: (Start) %F A143025 a(n) = (19 - 13*I^(2*n) - I^(-n) - I^n)/4, where I = sqrt(-1). %F A143025 a(n) = (19 - 2*cos(n*Pi/2) - 13*cos(n*Pi))/4. (End) %p A143025 seq(op([1, 8, 2, 8]), n=0..50); # _Wesley Ivan Hurt_, Jul 10 2016 %t A143025 PadRight[{}, 120, {1, 8, 2, 8}] (* _Harvey P. Dale_, Jul 01 2015 *) %o A143025 (PARI) a(n)=[1,8,2,8][n%4+1] \\ _Charles R Greathouse IV_, Jun 02 2011 %o A143025 (Magma) &cat [[1, 8, 2, 8]^^30]; // _Wesley Ivan Hurt_, Jul 10 2016 %Y A143025 Cf. A045944, A144437. %K A143025 nonn,easy %O A143025 0,2 %A A143025 _Paul Curtz_, Oct 13 2008 %E A143025 Partially edited by _R. J. Mathar_, Dec 10 2008