This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A143031 #7 Feb 15 2021 02:43:28 %S A143031 15,47,79,111,143,158,175,207,239,271,303,320,335,367,399,431,463,495, %T A143031 527,559,591,623,644,655,687,719,751,783,806,815,847,879,911,943,975, %U A143031 1007,1039,1071,1103,1130,1135,1167,1199,1231,1263,1292,1295,1327,1359 %N A143031 A sequence of asymptotic density zeta(5) - 1, where zeta is the Riemann zeta function. %C A143031 Made up of a collection of mutually exclusive residue classes modulo multiples of factorials. A set of such sequences with entries for each zeta(k) - 1 partitions the integers. See the linked paper for their construction. %H A143031 Amiram Eldar, <a href="/A143031/b143031.txt">Table of n, a(n) for n = 1..10000</a> %H A143031 William J. Keith, <a href="https://www.emis.de/journals/INTEGERS/papers/k19/k19.Abstract.html">Sequences of Density zeta(K) - 1</a>, INTEGERS, Vol. 10 (2010), Article #A19, pp. 233-241. Also <a href="http://arxiv.org/abs/0905.3765">arXiv preprint</a>, arXiv:0905.3765 [math.NT], 2009 and <a href="http://www.math.drexel.edu/~keith/ZetaKMinusOne.pdf">author's copy</a>. %t A143031 f[n_] := Module[{k = n - 1, m = 2, r}, While[{k, r} = QuotientRemainder[k, m]; r != 0, m++]; IntegerExponent[k + 1, m] + 2]; Select[Range[1400], f[#] == 5 &] (* _Amiram Eldar_, Feb 15 2021 after _Kevin Ryde_ at A161189 *) %Y A143031 Cf. A143028, A143029, A143030, A143032, A143033, A143034, A143035, A143036, A161189, A339013. %K A143031 nonn %O A143031 1,1 %A A143031 _William J. Keith_, Jul 18 2008