This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A143032 #8 Feb 15 2021 02:43:24 %S A143032 31,95,159,223,287,351,415,479,482,543,607,671,735,799,863,927,968, %T A143032 991,1055,1119,1183,1247,1311,1375,1439,1503,1567,1631,1695,1759,1823, %U A143032 1887,1940,1951,2015,2079,2143,2207,2271,2335,2399,2426,2463,2527,2591,2655 %N A143032 A sequence of asymptotic density zeta(6) - 1, where zeta is the Riemann zeta function. %C A143032 Made up of a collection of mutually exclusive residue classes modulo multiples of factorials. A set of such sequences with entries for each zeta(k) - 1 partitions the integers. See the linked paper for their construction. %H A143032 Amiram Eldar, <a href="/A143032/b143032.txt">Table of n, a(n) for n = 1..10000</a> %H A143032 William J. Keith, <a href="https://www.emis.de/journals/INTEGERS/papers/k19/k19.Abstract.html">Sequences of Density zeta(K) - 1</a>, INTEGERS, Vol. 10 (2010), Article #A19, pp. 233-241. Also <a href="http://arxiv.org/abs/0905.3765">arXiv preprint</a>, arXiv:0905.3765 [math.NT], 2009 and <a href="http://www.math.drexel.edu/~keith/ZetaKMinusOne.pdf">author's copy</a>. %t A143032 f[n_] := Module[{k = n - 1, m = 2, r}, While[{k, r} = QuotientRemainder[k, m]; r != 0, m++]; IntegerExponent[k + 1, m] + 2]; Select[Range[2700], f[#] == 6 &] (* _Amiram Eldar_, Feb 15 2021 after _Kevin Ryde_ at A161189 *) %Y A143032 Cf. A143028, A143029, A143030, A143031, A143033, A143034, A143035, A143036, A161189, A339013. %K A143032 nonn %O A143032 1,1 %A A143032 _William J. Keith_, Jul 18 2008