This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A143033 #7 Feb 15 2021 02:33:30 %S A143033 63,191,319,447,575,703,831,959,1087,1215,1343,1454,1471,1599,1727, %T A143033 1855,1983,2111,2239,2367,2495,2623,2751,2879,2912,3007,3135,3263, %U A143033 3391,3519,3647,3775,3903,4031,4159,4287,4415,4543,4671,4799,4927,5055,5183,5311 %N A143033 A sequence of asymptotic density zeta(7) - 1, where zeta is the Riemann zeta function. %C A143033 Made up of a collection of mutually exclusive residue classes modulo multiples of factorials. A set of such sequences with entries for each zeta(k) - 1 partitions the integers. See the linked paper for their construction. %H A143033 Amiram Eldar, <a href="/A143033/b143033.txt">Table of n, a(n) for n = 1..10000</a> %H A143033 William J. Keith, <a href="https://www.emis.de/journals/INTEGERS/papers/k19/k19.Abstract.html">Sequences of Density zeta(K) - 1</a>, INTEGERS, Vol. 10 (2010), Article #A19, pp. 233-241. Also <a href="http://arxiv.org/abs/0905.3765">arXiv preprint</a>, arXiv:0905.3765 [math.NT], 2009 and <a href="http://www.math.drexel.edu/~keith/ZetaKMinusOne.pdf">author's copy</a>. %t A143033 f[n_] := Module[{k = n - 1, m = 2, r}, While[{k, r} = QuotientRemainder[k, m]; r != 0, m++]; IntegerExponent[k + 1, m] + 2]; Select[Range[5300], f[#] == 7 &] (* _Amiram Eldar_, Feb 15 2021 after _Kevin Ryde_ at A161189 *) %Y A143033 Cf. A143028, A143029, A143030, A143031, A143032, A143034, A143035, A143036, A161189, A339013. %K A143033 nonn %O A143033 1,1 %A A143033 _William J. Keith_, Jul 18 2008