This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A143037 #16 Aug 17 2025 21:45:37 %S A143037 1,3,4,6,9,10,10,16,19,20,15,25,31,34,35,21,36,46,52,55,56,28,49,64, %T A143037 74,80,83,84,36,64,85,100,110,116,119,120,45,81,109,130,145,155,161, %U A143037 164,165,55,100,136,164,185,200,210,216,219,220 %N A143037 Triangle read by rows, A000012 * A127773 * A000012. A000012 is an infinite lower triangular matrix with all 1's, A127773 = (1; 0,3; 0,0,6; 0,0,0,10; ...). %C A143037 Right border = tetrahedral numbers, left border = triangular numbers. %C A143037 Alternatively this is the square array A(n,k) %C A143037 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ... %C A143037 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, ... %C A143037 10, 19, 31, 46, 64, 85, 109, 136, 166, 199, ... %C A143037 20, 34, 52, 74, 100, 130, 164, 202, 244, 290, ... %C A143037 35, 55, 80, 110, 145, 185, 230, 280, 335, 395, ... %C A143037 56, 83, 116, 155, 200, 251, 308, 371, 440, 515, ... %C A143037 ... %C A143037 read by antidiagonals where A(n,k) = n*(n^2 + 3*k*n + 3*k^2 - 1)/6 is the sum of n triangular numbers starting at A000217(k). - _R. J. Mathar_, May 06 2015 %F A143037 T(n,k) = k*(k^2-3*k*n-3*k+3*n^2+6*n+2) / 6. - _R. J. Mathar_, Aug 31 2022 %e A143037 First few rows of the triangle: %e A143037 1; %e A143037 3, 4; %e A143037 6, 9, 10; %e A143037 10, 16, 19, 20; %e A143037 15, 25, 31, 34, 35; %e A143037 21, 36, 46, 52, 55, 56; %e A143037 28, 49, 64, 74, 80, 83, 84; %e A143037 36, 64, 85, 100, 110, 116, 119, 120; %e A143037 ... %p A143037 A143037 := proc(n,k) %p A143037 k*(k^2-3*k*n-3*k+3*n^2+6*n+2) / 6 ; %p A143037 end proc: %p A143037 seq(seq(A143037(n,k),k=1..n),n=1..12) ; # _R. J. Mathar_, Aug 31 2022 %t A143037 T[n_,k_] = k*(k^2-3*k*n-3*k+3*n^2+6*n+2) / 6;Table[T[n,k],{n,10},{k,n}]//Flatten (* _James C. McMahon_, Aug 13 2025 *) %Y A143037 Cf. A001296 (row sums). %K A143037 nonn,tabl,easy %O A143037 1,2 %A A143037 _Gary W. Adamson_ & _Roger L. Bagula_, Jul 18 2008