cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143062 Expansion of false theta series variation of Euler's pentagonal number series in powers of x.

This page as a plain text file.
%I A143062 #50 Feb 01 2025 00:49:40
%S A143062 1,-1,1,0,0,-1,0,1,0,0,0,0,-1,0,0,1,0,0,0,0,0,0,-1,0,0,0,1,0,0,0,0,0,
%T A143062 0,0,0,-1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,1,0,0,0,0,0,0,0,
%U A143062 0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,0
%N A143062 Expansion of false theta series variation of Euler's pentagonal number series in powers of x.
%C A143062 a(n) = sum over all partitions of n into distinct parts of number of partitions with even largest part minus number with odd largest part.
%C A143062 In the Berndt reference replace {a -> 1, q -> x} in equation (3.1) to get g.f. Replace {a -> x, q -> x} to get f(x). G.f. is 1 - f(x) * x / (1 + x).
%D A143062 G. E. Andrews and B. C. Berndt, Ramanujan's lost notebook, Part I, Springer, New York, 2005, MR2135178 (2005m:11001) See Section 9.4, pp. 232-236.
%D A143062 Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, see p. 41, 10th equation numerator.
%H A143062 G. C. Greubel, <a href="/A143062/b143062.txt">Table of n, a(n) for n = 0..1000</a>
%H A143062 B. C. Berndt, B. Kim, and A. J. Yee, <a href="http://dx.doi.org/10.1016/j.jcta.2009.07.005">Ramanujan's lost notebook: Combinatorial proofs of identities associated with Heine's transformation or partial theta functions</a>, J. Comb. Thy. Ser. A, 117 (2010), 957-973.
%H A143062 I. Pak, <a href="http://www.math.ucla.edu/~pak/papers/finefull.pdf">On Fine's partition theorems, Dyson, Andrews and missed opportunities</a>, Math. Intelligencer, 25 (No. 1, 2003), 10-16.
%F A143062 a(n) = b(24*n + 1) where b() is multiplicative with b(p^(2*e)) = (-1)^e if p = 5 (mod 6), b(p^(2*e)) = +1 if p = 1 (mod 6) and b(p^(2*e-1)) = b(2^e) = b(3^e) = 0 if e>0.
%F A143062 G.f.: Sum_{k>=0} x^((3*k^2 + k) / 2) * (1 - x^(2*k + 1)) = 1 - Sum_{k>0} x^((3*k^2 - k) / 2) * (1 - x^k).
%F A143062 G.f.: 1 - x / (1 + x) + x^3 / ((1 + x) * (1 + x^2)) - x^6 / ((1 + x) * (1 + x^2) * (1 + x^3)) + ...
%F A143062 G.f.: 1 - x / (1 + x^2) + x^2 / ((1 + x^2) * (1 + x^4)) - x^3 / ((1 + x^2 ) * (1 + x^4) * (1 + x^6)) + ...
%F A143062 |a(n)| = |A010815(n)| = |A080995(n)| = |A199918(n)| = |A121373(n)|.
%F A143062 From _Joerg Arndt_, Jun 24 2013: (Start)
%F A143062 a(n) = A026838(n) - A026837(n) (Fine's theorem), see the Pak reference.
%F A143062 a(n)=1 if n = k(3k+1)/2, a(n)=-1 if n = k(3k-1)/2, a(n)=0 otherwise.
%F A143062 G.f.: Sum_{n >= 0} (-q)^n * (Product_{k = 1..n-1} 1 + q^k). (End)
%F A143062 a(n) = - A203568(n) unless n=0. a(0) = 1. - _Michael Somos_, Jul 12 2015
%F A143062 From _Peter Bala_, Feb 04 2021: (Start)
%F A143062 A conjectural g.f: 1 + Sum_{n >= 0} (-1)^n*x^(2*n-1)/Product_{k = 1..n} 1 + x^(2*k-1).
%F A143062 G.f.: 1 - Sum_{n >= 1} x^(n*(2*n-1))/Product_{k = 1..2*n} 1 + x^k [added Dec 19 2024: see Berndt et al., Entry 9.44]. (End)
%F A143062 Conjectural g.f.: (1/(1 + x)) * (2 - Sum_{n >= 0} (-1)^n * x^(3*n)/Product_{k = 1..n} 1 + x^(2*k)). - _Peter Bala_, Jan 19 2025
%e A143062 a(5) = -1 +1 -1 = -1 since 5 = 4 + 1 = 3 + 2. a(7) = -1 +1 -1 +1 +1 = 1 since 7 = 6 + 1 = 5 + 2 = 4 + 3 = 4 + 2 + 1.
%e A143062 G.f. = 1 - x + x^2 - x^5 + x^7 - x^12 + x^15 - x^22 + x^26 - x^35 + x^40 + ...
%e A143062 G.f. = q - q^25 + q^49 - q^121 + q^169 - q^289 + q^361 - q^529 + q^625 - q^841 + ...
%t A143062 a[ n_] := If[ SquaresR[ 1, 24 n + 1] == 2, (-1)^Quotient[ Sqrt[24 n + 1], 3], 0];
%t A143062 a[ n_] := With[ {m = Sqrt[24 n + 1]}, If[ IntegerQ@m, (-1)^Quotient[ m, 3], 0]]; (* _Michael Somos_, Nov 18 2015 *)
%o A143062 (PARI) {a(n) = if( issquare( 24*n + 1, &n), (-1)^(n \ 3) )};
%Y A143062 Cf. A010815, A026837, A026838, A080995, A121373, A199918, A203568, A268539.
%K A143062 sign,easy
%O A143062 0,1
%A A143062 _Michael Somos_, Jul 21 2008