This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A143088 #12 Sep 13 2024 08:06:46 %S A143088 1,3,3,7,9,7,15,21,21,15,31,45,49,45,31,63,93,105,105,93,63,127,189, %T A143088 217,225,217,189,127,255,381,441,465,465,441,381,255,511,765,889,945, %U A143088 961,945,889,765,511,1023,1533,1785,1905,1953,1953,1905,1785,1533,1023,2047 %N A143088 Triangle T(n,m) = (2^(m+1) - 1) * (2^(n-m+1) - 1), read by rows, 0 <= m <= n. %C A143088 Row sums are A045618. %C A143088 Considered as a square array A(m,n) = (2^m - 1)(2^n - 1), (m, n >= 1), read by rising antidiagonals, this gives the number of m X n matrices of rank 1 over the field F_2. For a different field F_q, that number would be A(m,n) = (q^m - 1)(q^n - 1)/(q - 1). It satisfies the recurrence relation A(m,n) = A(m,n-1)*q + A(m,1). - _M. F. Hasler_, Sep 12 2024 %F A143088 T(n,m) = T(n,n-m). %F A143088 T(n,0) = T(n,n) = 2^(n+1) - 1. - _M. F. Hasler_, Sep 12 2024 %e A143088 1; %e A143088 3, 3; %e A143088 7, 9, 7; %e A143088 15, 21, 21, 15; %e A143088 31, 45, 49, 45, 31; %e A143088 63, 93, 105, 105, 93, 63; %e A143088 127, 189, 217, 225, 217, 189, 127; %e A143088 255, 381, 441, 465, 465, 441, 381, 255; %e A143088 511, 765, 889, 945, 961, 945, 889, 765, 511; %e A143088 1023, 1533, 1785, 1905, 1953, 1953, 1905, 1785, 1533, 1023; %e A143088 2047, 3069, 3577, 3825, 3937, 3969, 3937, 3825, 3577, 3069, 2047; %e A143088 ... %e A143088 From _M. F. Hasler_, Sep 12 2024: (Start) %e A143088 Considered as a square array A(m,n), read by antidiagonals, with m, n >= 1, this represents the following matrix A: %e A143088 m \ n: 1 | 2 | 3 | 4 | 5 | ... %e A143088 -----+------+-----+-----+-----+-----+----- %e A143088 1 | 1 | 3 | 7 | 15 | 31 | ... %e A143088 2 | 3 | 9 | 21 | 45 | 93 | ... %e A143088 3 | 7 | 21 | 49 | 105 | 217 | ... %e A143088 4 | 15 | 45 | 105 | 225 | 465 | ... %e A143088 ... %e A143088 Here each row equals twice the previous row plus the first row, and likewise for columns. See my comment relating this to rank 1 matrices over F_2. (End) %t A143088 Table[Table[(2^(m + 1) - 1)*(2^(n - m + 1) - 1), {m, 0, n}], {n, 0, 10}]; Flatten[%] %o A143088 (PARI) T(n,m) = (2^(m+1) - 1) * (2^(n-m+1) - 1) \\ _M. F. Hasler_, Sep 12 2024 %Y A143088 Cf. A000225 (first column), A068156 (second column). %K A143088 nonn,tabl %O A143088 0,2 %A A143088 _Roger L. Bagula_ and _Gary W. Adamson_, Oct 16 2008