cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143091 a(n) = a(floor(2n/3)) + a(floor(n/3)) starting a(0)=a(1)=1.

This page as a plain text file.
%I A143091 #6 Jul 12 2012 08:35:10
%S A143091 1,1,2,3,3,4,5,5,6,8,8,8,9,9,11,12,12,12,14,14,14,16,16,17,18,18,18,
%T A143091 22,22,22,22,22,24,24,24,25,27,27,27,27,27,31,33,33,33,34,34,34,36,36,
%U A143091 36,36,36,37,41,41,41,41,41,41,41,41,45,49,49,49,49,49,50,51,51,51,54,54
%N A143091 a(n) = a(floor(2n/3)) + a(floor(n/3)) starting a(0)=a(1)=1.
%p A143091 A143091 := proc(n)
%p A143091         option remember;
%p A143091         if n <=1 then
%p A143091                 1;
%p A143091         else
%p A143091                 procname(floor(n/3))+procname(floor(2*n/3)) ;
%p A143091         end if;
%p A143091 end proc: # _R. J. Mathar_, Jul 12 2012
%t A143091 Clear[a, f, b, c, g] (*fractal noise chaotic sequence*) f[0] = 1; f[1] = 0; f[1] = 1; f[n_] := f[n] = f[n - f[n - 1]] + f[Floor[2*n/3]] (*Cantor like fractal stair step chaotic sequence*) g[0] = 1; g[1] = 0; g[1] = 1; g[n_] := g[n] = g[Floor[2*n/3]] + g[Floor[n/3]]; ListPlot[Table[{f[n], g[n]}, {n, 0, 200}], PlotJoined -> True]; Table[g[n], {n, 0, 200}]
%K A143091 nonn
%O A143091 0,3
%A A143091 _Roger L. Bagula_, Oct 16 2008