cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143095 (1, 2, 4, 8, ...) interleaved with (4, 8, 16, 32, ...).

This page as a plain text file.
%I A143095 #25 Feb 08 2022 22:05:09
%S A143095 1,4,2,8,4,16,8,32,16,64,32,128,64,256,128,512,256,1024,512,2048,1024,
%T A143095 4096,2048,8192,4096,16384,8192,32768,16384,65536,32768,131072,65536,
%U A143095 262144,131072,524288,262144,1048576,524288,2097152,1048576,4194304
%N A143095 (1, 2, 4, 8, ...) interleaved with (4, 8, 16, 32, ...).
%C A143095 Partial sums are in A079360. a(n) = A076736(n+5). - _Klaus Brockhaus_, Jul 27 2009
%H A143095 G. C. Greubel, <a href="/A143095/b143095.txt">Table of n, a(n) for n = 0..1000</a>
%H A143095 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (0,2).
%F A143095 Inverse binomial transform of A048655: (1, 5, 11, 27, 65, 157, ...).
%F A143095 a(n) = A135530(n+1). - _R. J. Mathar_, Aug 02 2008
%F A143095 From _Klaus Brockhaus_, Jul 27 2009: (Start)
%F A143095 a(n) = (5 - 3*(-1)^n) * 2^((2*n-1+(-1)^n)/4)/2.
%F A143095 a(n) = 2*a(n-2) for n > 1; a(0) = 1, a(1) = 4.
%F A143095 G.f.: (1+4*x)/(1-2*x^2). (End)
%F A143095 a(n+3) = a(n+2)*a(n+1)/a(n). - _Reinhard Zumkeller_, Mar 04 2011
%p A143095 seq(coeff(series((1+4*x)/(1-2*x^2), x, n+1), x, n), n = 0..45); # _G. C. Greubel_, Mar 13 2020
%t A143095 nn=30;With[{p=2^Range[0,nn]},Riffle[Take[p,nn-2],Drop[p,2]]] (* _Harvey P. Dale_, Oct 03 2011 *)
%o A143095 (PARI) for(n=0, 41, print1((5-3*(-1)^n)*2^(1/4*(2*n-1+(-1)^n))/2, ",")) \\ _Klaus Brockhaus_, Jul 27 2009
%o A143095 (Maxima) A143095(n):=(5-3*(-1)^n)*2^(1/4*(2*n-1+(-1)^n))/2$
%o A143095 makelist(A143095(n),n,0,30); /* _Martin Ettl_, Nov 03 2012 */
%o A143095 (Sage) [(5 -3*(-1)^n)*2^((2*n-1+(-1)^n)/4)/2 for n in (0..45)] # _G. C. Greubel_, Mar 13 2020
%Y A143095 Cf. A048655.
%K A143095 nonn,easy
%O A143095 0,2
%A A143095 _Gary W. Adamson_ & _Roger L. Bagula_, Jul 23 2008
%E A143095 More terms from _Klaus Brockhaus_, Jul 27 2009