This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A143104 #67 Feb 16 2025 08:33:08 %S A143104 1,1,1,1,1,1,1,0,0,1,1,0,1,1,1,1,0,0,0,0,1,1,0,0,1,0,1,1,1,0,0,0,0,1, %T A143104 0,1,1,0,0,0,1,0,0,1,1,1,0,0,0,0,0,0,0,0,1,1,0,0,0,0,1,0,1,1,1,1,1,0, %U A143104 0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,1,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,1,0,1,0,1 %N A143104 Infinite Redheffer matrix read by upwards antidiagonals. %C A143104 Note that Redheffer's matrix (1977) is actually given by A077049: the first row starts with a single 1. We follow the nomenclature of Wilf, Dana, Vaughan and Weisstein, which uses the transpose and sets the first column to all-1. - _R. J. Mathar_, Jul 22 2017 %C A143104 The determinant of the n X n Redheffer matrix is given by Mertens's function A002321(n) [Barrett]. %C A143104 For n > 1, replacing a(n,n) with 0 in the Redheffer matrix and taking the determinant gives Moebius(n) = A008683(n). The number of permutations with nonzero contribution to this determinant is given by A002033. For first few n, these permutations are shown in the sequences A144193 to A144201. - _Mats Granvik_, Sep 14 2008 %C A143104 The determinant that is the Moebius function was discovered by reading the blog post "The Mobius function is strongly orthogonal to nilsequences" by _Terence Tao_. - _Mats Granvik_, Jan 24 2009 %D A143104 R. C. Vaughan, On the eigenvalues of Redheffer's matrix I, in: Number Theory with an Emphasis on the Markoff Spectrum (Provo, Utah, 1991), 283-296, Lecture Notes in Pure and Appl. Math., 147, Dekker, New-York, 1993. %H A143104 Enrique Pérez Herrero, <a href="/A143104/b143104.txt">Rows n = 1..100 of triangle, flattened</a> %H A143104 W. B. Barret, R. W. Forcade and A. D. Pollington, <a href="http://dx.doi.org/10.1016/0024-3795(88)90241-8">On the spectral radius of a (0,1) matrix related to Mertens' Function</a>, Lin. Alg. Applic. 107 (1988) 151-159. %H A143104 Olivier Bordellès and Benoit Cloitre, <a href="http://www.emis.de/journals/JIPAM/images/317_08_JIPAM/317_08.pdf">A matrix inequality for Möbius functions</a>, J. Inequal. Pure and Appl. Math., Volume 10 (2009), Issue 3, Article 62, 9 pp. %H A143104 Will Dana, <a href="https://sites.math.washington.edu/~morrow/336_15/papers/will.pdf">Eigenvalues of the Redheffer Matrix and their relation to the Mertens Function</a>, (2015) %H A143104 R. M. Redheffer, <a href="http://dx.doi.org/10.1007/978-3-0348-5936-3_13">Eine explizit lösbare Optimierungsaufgabe</a>, Internat. Schiftenreihe Numer. Math., 36 (1977), 213-216. %H A143104 T. Tao, <a href="http://terrytao.wordpress.com/2008/07/13/the-mobius-and-nilsequences-conjecture/">The Mobius function is strongly orthogonal to nilsequences</a> %H A143104 R. C. Vaughan, <a href="http://dx.doi.org/10.1017/S1446788700037654">On the eigenvalues of Redheffer's matrix, II</a>, J. Austral. Math. Soc. (Series A) 60 (1996), 260-273. %H A143104 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RedhefferMatrix.html">Redheffer Matrix</a>. %H A143104 Herbert S. Wilf, <a href="http://arxiv.org/abs/math/0408263">The Redheffer matrix of a partially ordered set</a>, arXiv:math/0408263 [math.CO], 2004. %H A143104 Herbert S. Wilf, <a href="https://doi.org/10.37236/1867">The Redheffer matrix of a partially ordered set</a>, The Electronic Journal of Combinatorics 11(2) (2004), #R10. %F A143104 a(i,j) = 1 if j=1 or i|j; 0 otherwise. %F A143104 a(A000217(n)) = a(A000217(n)+1) = 1. - _Enrique Pérez Herrero_, Apr 16 2010 %e A143104 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 %e A143104 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 %e A143104 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 %e A143104 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 %e A143104 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 %e A143104 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 %e A143104 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 %e A143104 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 %e A143104 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 %e A143104 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 %e A143104 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 %e A143104 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 %e A143104 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 %e A143104 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 %e A143104 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 %e A143104 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 %e A143104 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 %e A143104 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 %e A143104 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 %e A143104 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 %p A143104 A143104 := proc(i,j) %p A143104 if modp(j,i) =0 or j = 1 then %p A143104 1; %p A143104 else %p A143104 0; %p A143104 end if; %p A143104 end proc: %p A143104 for d from 2 to 10 do %p A143104 for m from d-1 to 1 by -1 do %p A143104 n := d-m ; %p A143104 printf("%d ",A143104(n,m)) ; %p A143104 end do: %p A143104 end do: # _R. J. Mathar_, Jul 23 2017 %t A143104 Redheffer[i_, j_] := Boole[Divisible[i, j] || (i == 1)]; %t A143104 T[n_] := n*(n + 1)/2; %t A143104 S[n_] := Floor[1/2 + Sqrt[2 n]]; %t A143104 j[n_] := 1 + T[S[n]] - n; %t A143104 i[n_] := 1 + S[n] - j[n]; %t A143104 A143104[n_] := Redheffer[i[n], j[n]]; (* _Enrique Pérez Herrero_, Apr 13 2010 *) %t A143104 a[i_, j_] := If[j == 1 || Divisible[j, i], 1, 0]; %t A143104 Table[a[i-j+1, j], {i, 1, 14}, {j, 1, i}] // Flatten (* _Jean-François Alcover_, Aug 07 2018 *) %o A143104 (Excel) =if(mod(column();row())=0;1;if(column()=1;1;0)). Produces the Redheffer matrix. %o A143104 (PARI) { a(i,j) = (j==1) || (j%i==0); } %Y A143104 Cf. A008683, A051731. %Y A143104 Cf. A002033, A144193 .. A144201, A143142. - _Mats Granvik_, Sep 14 2008 %K A143104 nonn,tabl %O A143104 1,1 %A A143104 _Mats Granvik_, _Roger L. Bagula_ and _Gary W. Adamson_, Jul 24 2008 %E A143104 Edited and extended by _Max Alekseyev_, Oct 28 2008