This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A143111 #18 Dec 20 2022 12:01:13 %S A143111 1,1,1,1,0,1,1,1,0,2,1,0,0,0,1,1,1,1,0,0,3,1,0,0,0,0,0,1,1,1,0,2,0,0, %T A143111 0,4,1,0,1,0,0,0,0,0,3,1,1,0,0,1,0,0,0,0,5,1,0,0,0,0,0,0,0,0,0,1,1,1, %U A143111 1,2,0,3,0,0,0,0,0,6,1,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,1,0,0,0,0,0,0,7 %N A143111 Triangle read by rows, T(n,k) = largest proper divisor of A127093(n,k) where (largest proper divisor)(n) = A032742(n) if n>0 and 0 if n=0. %C A143111 Previous name: A051731 * A032742 * 0^(n-k), 1 <= k <= n. %C A143111 Row sums = A143112 = sum of (largest proper divisors of the divisors of n) = inverse Mobius transform (A051731) of A032742 (largest proper divisor of n). %C A143111 The n-th row records the proper divisors of the divisors of n, where the divisors of n comprise triangle A127093 and the largest proper divisors of n = A032742. %F A143111 Triangle read by rows, T(n,k) = A051731 * A032742 * 0^(n-k), 1 <= k <= n. %e A143111 First few rows of the triangle: %e A143111 1; %e A143111 1, 1; %e A143111 1, 0, 1; %e A143111 1, 1, 0, 2; %e A143111 1, 0, 0, 0, 1; %e A143111 1, 1, 1, 0, 0, 3; %e A143111 1, 0, 0, 0, 0, 0, 1; %e A143111 1, 1, 0, 2, 0, 0, 0, 4; %e A143111 1, 0, 1, 0, 0, 0, 0, 0, 3; %e A143111 1, 1, 0, 0, 1, 0, 0, 0, 0, 5; %e A143111 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1; %e A143111 1, 1, 1, 2, 0, 3, 0, 0, 0, 0, 0, 6; %e A143111 ... %e A143111 Example: The divisors of 12 are shown in row 12 of triangle A127093: %e A143111 (1, 2, 3, 4, 0, 6, 0, 0, 0, 0, 0, 12); %e A143111 and the largest proper divisors of those terms are: %e A143111 (1, 1, 1, 2, 0, 3, 0, 0, 0, 0, 0, 6) %e A143111 where the first 12 terms of A031742 (largest proper divisors of n) are: %e A143111 (1, 1, 1, 2, 1, 3, 1, 4, 3, 5, 1, 6). %t A143111 Table[If[# > 1, Divisors[#][[-2]], #] &[k*Boole[Divisible[n, k]]], {n, 14}, {k, n}] (* _Michael De Vlieger_, Dec 19 2022 *) %o A143111 (PARI) t(n,k) = k * 0^(n % k); \\ A127093 %o A143111 f(n) = if(n<=1, n, n/factor(n)[1, 1]); \\ A032742 %o A143111 T(n,k) = f(t(n,k)); %o A143111 row(n) = vector(n, k, T(n,k)); \\ _Michel Marcus_, Dec 19 2022 %o A143111 (PARI) T1(n,k) = 0^(n % k); \\ A051731 %o A143111 a2(n) = if(n==1, 1, n/factor(n)[1, 1]); \\ A032742 %o A143111 tabl(nn) = my(m1 = matrix(nn,nn,n,k,T1(n,k)), v2 = vector(nn,n,a2(n))); m1*matdiagonal(v2); \\ _Michel Marcus_, Dec 19 2022 %Y A143111 Cf. A051731, A032742, A143112, A127093. %K A143111 nonn,tabl %O A143111 1,10 %A A143111 _Gary W. Adamson_ and _Mats Granvik_, Jul 25 2008 %E A143111 Typo in data corrected and new name from existing formula by _Michel Marcus_, Dec 19 2022