This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A143165 #19 Mar 18 2019 15:39:51 %S A143165 0,1,6,49,468,5469,73362,1138005,19737000,383284665,8163588510, %T A143165 190709475705,4818820261500,131650382056725,3850053335966250, %U A143165 120466494638624925,4002649276431128400,141156781966460192625,5252646220794868029750,206149276075766825426625 %N A143165 Expansion of the exponential generating function arcsin(2*x)/(2*(1-2*x)^(3/2)). %C A143165 Used in A024199(n+1) = A003148(n) + a(n). %C A143165 Binomial convolution of [0,1^2,0,2^2,0,...,0,((2*k)!/k!)^2,0,...] (e.g.f. arcsin(2*x)/2) with the double factorials A001147. %H A143165 Robert Israel, <a href="/A143165/b143165.txt">Table of n, a(n) for n = 0..402</a> %F A143165 E.g.f.: arcsin(2*x)/(2*(1-2*x)^(3/2)). %F A143165 a(n) = sum(binomial(n,2*k+1)*(4^k)*((2*k-1)!!)^2*(2*(n-2*k)-1)!!,k=0..floor(n/2)), with (2*n-1)!!:= A001147(n) (double factorials). %F A143165 a(n) ~ Pi * 2^(n-1/2) * n^(n+1) / exp(n) * (1 - sqrt(2/(Pi*n))). - _Vaclav Kotesovec_, Mar 18 2014 %F A143165 2*(n+1)*(3+2*n)^2*a(n)-(4*n^2+8*n+1)*a(n+1)-(2*(n+4))*a(n+2)+a(n+3)=0. - _Robert Israel_, Feb 07 2018 %e A143165 a(3) + A003148(3) = 49 + 27 = 76 = A024199(4). %p A143165 f:= gfun:-rectoproc({2*(n+1)*(3+2*n)^2*a(n)-(4*n^2+8*n+1)*a(n+1)-(2*(n+4))*a(n+2)+a(n+3)=0, a(0)=0,a(1)=1,a(2)=6},a(n),remember): %p A143165 map(f, [$0 .. 30]); # _Robert Israel_, Feb 07 2018 %t A143165 With[{nn=20},CoefficientList[Series[ArcSin[2x]/(2(1-2x)^(3/2)),{x,0,nn}],x] Range[0,nn]!] (* _Harvey P. Dale_, Mar 18 2019 *) %o A143165 (PARI) x = 'x + O('x^40); concat(0, Vec(serlaplace(asin(2*x)/(2*(1-2*x)^(3/2))))) \\ _Michel Marcus_, Jun 18 2017 %Y A143165 Cf. A003148, A024199. %K A143165 nonn,easy %O A143165 0,3 %A A143165 _Wolfdieter Lang_, Sep 15 2008