A144269 Partition number array, called M32hat(-1)= 'M32(-1)/M3'= 'A143171/A036040', related to A001497(n-1,m-1)= |S2(-1;n,m)| (generalized Stirling triangle).
1, 1, 1, 3, 1, 1, 15, 3, 1, 1, 1, 105, 15, 3, 3, 1, 1, 1, 945, 105, 15, 9, 15, 3, 1, 3, 1, 1, 1, 10395, 945, 105, 45, 105, 15, 9, 3, 15, 3, 1, 3, 1, 1, 1, 135135, 10395, 945, 315, 225, 945, 105, 45, 15, 9, 105, 15, 9, 3, 1, 15, 3, 1, 3, 1, 1, 1, 2027025, 135135, 10395, 2835
Offset: 1
Examples
a(4,3)= 1 = |S2(-1,2,1)|^2. The relevant partition of 4 is (2^2). [1]; [1,1]; [3,1,1]; [15,3,1,1,1]; [105,15,3,3,1,1,1]; ... [From _Wolfdieter Lang_, Oct 23 2008]
Links
- Wolfdieter Lang, First 10 rows of the array and more.
- Wolfdieter Lang, Combinatorial Interpretation of Generalized Stirling Numbers, J. Int. Seqs. Vol. 12 (2009) 09.3.3.
Crossrefs
Cf. A144271 (M32hat(-2) array).
Formula
a(n,k)= product(|S2(-1,j,1)|^e(n,k,j),j=1..n) with |S2(-1,n,1)|= A001147(n-1) = (2*n-3)(!^2) (2-factorials) for n>=2 and 1 if n=1 and the exponent e(n,k,j) of j in the k-th partition of n in the A-St ordering of the partitions of n.
Extensions
Corrected all entries. Wolfdieter Lang, Oct 23 2008
Comments