A143172 Partition number array, called M32(-2), related to A004747(n,m) = |S2(-2;n,m)| (generalized Stirling triangle).
1, 2, 1, 10, 6, 1, 80, 40, 12, 12, 1, 880, 400, 200, 100, 60, 20, 1, 12320, 5280, 2400, 1000, 1200, 1200, 120, 200, 180, 30, 1, 209440, 86240, 36960, 28000, 18480, 16800, 7000, 4200, 2800, 4200, 840, 350, 420, 42, 1, 4188800, 1675520, 689920, 492800, 224000, 344960
Offset: 1
Examples
a(4,3)=12. The relevant partition of 4 is (2^2). The 12 unordered (0,2,0,0)-forests are composed of the following 2 rooted increasing trees 1--2,3--4; 1--3,2--4 and 1--4,2--3. The trees are binary because r=1 vertices are binary (2-ary) and for the leaves (r=0) the arity does not matter. Each of the three differently labeled forests comes therefore in 4 versions due to the two binary root vertices.
Links
- W. Lang, First 10 rows of the array and more.
- W. Lang, Combinatorial Interpretation of Generalized Stirling Numbers, J. Int. Seqs. Vol. 12 (2009) 09.3.3.
Formula
a(n,k)= (n!/product(e(n,k,j)!*j!^(e(n,k,j),j=1..n))*product(|S2(-2,j,1)|^e(n,k,j),j=1..n) = M3(n,k)*product(|S2(-2,j,1)|^e(n,k,j),j=1..n), with |S2(-2,n,1)|= A008544(n-1) = (3*n-4)(!^3) (3-factorials) for n>=2 and 1 if n=1 and the exponent e(n,k,j) of j in the k-th partition of n in the A-St ordering of the partitions of n. Exponents 0 can be omitted due to 0!=1. M3(n,k):= A036040(n,k), k=1..p(n), p(n):= A000041(n).
Comments