This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A143183 #12 Apr 24 2024 03:06:34 %S A143183 1,4,4,9,1,9,16,6,6,16,25,13,1,13,25,36,22,8,8,22,36,49,33,17,1,17,33, %T A143183 49,64,46,28,10,10,28,46,64,81,61,41,21,1,21,41,61,81,100,78,56,34,12, %U A143183 12,34,56,78,100,121,97,73,49,25,1,25,49,73,97,121 %N A143183 Triangle T(n,k) = 1 + (2+n)*abs(n-2*k), read by rows, for 0 <= k <= n. %H A143183 G. C. Greubel, <a href="/A143183/b143183.txt">Rows n = 0..50 of the triangle, flattened</a> %F A143183 T(n, k) = 1 + (2+n)*abs(n-2*k), for 0 <= k <= n. %F A143183 T(n, k) = T(n, n-k). %F A143183 Sum_{k=0..n} T(n, k) = (n+2)*A007590(n+1) + n + 1 (row sums). %F A143183 From _G. C. Greubel_, Apr 23 2024: (Start) %F A143183 T(n, 0) = A000290(n+1). %F A143183 T(2*n-1, n) = A005843(n+1), n >= 1. %F A143183 Sum_{k=0..n} (-1)^k*T(n, k) = (1/2)*(1 + (-1)^n)*((n^2 + 3*n + 3) - (-1)^(n/2)*(n + 2)). (End) %e A143183 Triangle begins as: %e A143183 1; %e A143183 4, 4; %e A143183 9, 1, 9; %e A143183 16, 6, 6, 16; %e A143183 25, 13, 1, 13, 25; %e A143183 36, 22, 8, 8, 22, 36; %e A143183 49, 33, 17, 1, 17, 33, 49; %e A143183 64, 46, 28, 10, 10, 28, 46, 64; %e A143183 81, 61, 41, 21, 1, 21, 41, 61, 81; %e A143183 100, 78, 56, 34, 12, 12, 34, 56, 78, 100; %e A143183 121, 97, 73, 49, 25, 1, 25, 49, 73, 97, 121; %p A143183 A143183 := proc(n,k) %p A143183 1+(2+n)*abs(n-2*m) ; %p A143183 end proc: # _R. J. Mathar_, Jul 12 2012 %t A143183 T[n_, m_]:= 1 + Abs[(n-m+1)^2 - (m+1)^2]; %t A143183 Table[T[n, m], {n,0,12}, {m,0,n}]//Flatten %o A143183 (Magma) %o A143183 [1+(n+2)*Abs(n-2*k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Apr 23 2024 %o A143183 (SageMath) %o A143183 flatten([[1+(n+2)*abs(n-2*k) for k in range(n+1)] for n in range(13)]) # _G. C. Greubel_, Apr 23 2024 %Y A143183 Cf. A000290, A005843, A007590, A143182. %K A143183 nonn,tabl,easy %O A143183 0,2 %A A143183 _Roger L. Bagula_ and _Gary W. Adamson_, Oct 17 2008 %E A143183 Row sums corrected by _R. J. Mathar_, Jul 12 2012