cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A143201 Product of distances between prime factors in factorization of n.

This page as a plain text file.
%I A143201 #24 Nov 12 2023 13:08:40
%S A143201 1,1,1,1,1,2,1,1,1,4,1,2,1,6,3,1,1,2,1,4,5,10,1,2,1,12,1,6,1,6,1,1,9,
%T A143201 16,3,2,1,18,11,4,1,10,1,10,3,22,1,2,1,4,15,12,1,2,7,6,17,28,1,6,1,30,
%U A143201 5,1,9,18,1,16,21,12,1,2,1,36,3,18,5,22,1,4,1,40,1,10,13,42,27,10,1,6,7,22
%N A143201 Product of distances between prime factors in factorization of n.
%C A143201 a(n) is the product of the sum of 1 and first differences of prime factors of n with multiplicity, with a(n) = 1 for n = 1 or prime n. - _Michael De Vlieger_, Nov 12 2023.
%C A143201 a(A007947(n)) = a(n);
%C A143201 A006093 and A001747 give record values and where they occur:
%C A143201 A006093(n)=a(A001747(n+1)) for n>1.
%C A143201 a(n) = 1 iff n is a prime power: a(A000961(n))=1;
%C A143201 a(n) = 2 iff n has exactly 2 and 3 as prime factors:
%C A143201 a(A033845(n))=2;
%C A143201 a(n) = 3 iff n is in A143202;
%C A143201 a(n) = 4 iff n has exactly 2 and 5 as prime factors:
%C A143201 a(A033846(n))=4;
%C A143201 a(n) = 5 iff n is in A143203;
%C A143201 a(n) = 6 iff n is in A143204;
%C A143201 a(n) = 7 iff n is in A143205;
%C A143201 a(n) <> A006512(k)+1 for k>1.
%C A143201 a(A033849(n))=3; a(A033851(n))=3; a(A033850(n))=5; a(A033847(n))=6; a(A033848(n))=10. [_Reinhard Zumkeller_, Sep 19 2011]
%H A143201 Reinhard Zumkeller, <a href="/A143201/b143201.txt">Table of n, a(n) for n = 1..10000</a>
%H A143201 <a href="/index/Pri#gaps">Index entries for primes, gaps between</a>
%F A143201 a(n) = f(n,1,1) where f(n,q,y) = if n=1 then y else if q=1 then f(n/p,p,1)) else f(n/p,p,y*(p-q+1)) with p = A020639(n) = smallest prime factor of n.
%e A143201 a(86) = a(43*2) = 43-2+1 = 42;
%e A143201 a(138) = a(23*3*2) = (23-3+1)*(3-2+1) = 42;
%e A143201 a(172) = a(43*2*2) = (43-2+1)*(2-2+1) = 42;
%e A143201 a(182) = a(13*7*2) = (13-7+1)*(7-2+1) = 42;
%e A143201 a(276) = a(23*3*2*2) = (23-3+1)*(3-2+1)*(2-2+1) = 42;
%e A143201 a(330) = a(11*5*3*2) = (11-5+1)*(5-3+1)*(3-2+1) = 42.
%t A143201 Table[Times@@(Differences[Flatten[Table[First[#],{Last[#]}]&/@ FactorInteger[ n]]]+1),{n,100}] (* _Harvey P. Dale_, Dec 07 2011 *)
%o A143201 (Haskell)
%o A143201 a143201 1 = 1
%o A143201 a143201 n = product $ map (+ 1) $ zipWith (-) (tail pfs) pfs
%o A143201    where pfs = a027748_row n
%o A143201 -- _Reinhard Zumkeller_, Sep 13 2011
%Y A143201 Cf. A000961, A001747, A006093, A020639, A033845, A033846.
%Y A143201 Cf. A033847, A033848, A033849, A033850.
%Y A143201 Cf. A143203, A143204, A143205.
%Y A143201 Cf. A027746.
%K A143201 nonn
%O A143201 1,6
%A A143201 _Reinhard Zumkeller_, Aug 12 2008