This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A143219 #12 Jul 13 2022 03:41:45 %S A143219 1,2,6,3,9,18,4,12,24,40,5,15,30,50,75,6,18,36,60,90,126,7,21,42,70, %T A143219 105,147,196,8,24,48,80,120,168,224,288,9,27,54,90,135,189,252,324, %U A143219 405,10,30,60,100,150,210,280,360,450,550 %N A143219 Triangle read by rows, A127648 * A000012 * A127773, 1 <= k <= n. %H A143219 G. C. Greubel, <a href="/A143219/b143219.txt">Rows n = 1..50 of the triangle, flattened</a> %F A143219 Triangle read by rows, A127648 * A000012 * A127773, 1 <= k <= n. %F A143219 Sum_{k=1..n} T(n, k) = A002417(n). %F A143219 T(n, n) = A002411(n). %F A143219 From _G. C. Greubel_, Jul 12 2022: (Start) %F A143219 T(n, k) = A002024(n,k) * A127773(n,k). %F A143219 T(n, k) = n * binomial(k+1, 2). %F A143219 Sum_{k=1..floor((n+1)/2)} T(n-k+1, k) = (1/4)*(4*n - 3*floor((n+1)/2) + 3)*binomial(2 + floor((n+1)/2), 3). %F A143219 T(2*n-1, n) = A002414(n), n >= 1. %F A143219 T(2*n-2, n-1) = A011379(n-1), n >= 2. (End) %e A143219 First few rows of the triangle = %e A143219 1; %e A143219 2, 6; %e A143219 3, 9, 18; %e A143219 4, 12, 24, 40; %e A143219 5, 15, 30, 50, 75; %e A143219 6, 18, 36, 60, 90, 126; %e A143219 7, 21, 42, 70, 105, 147, 196; %e A143219 ... %t A143219 Table[n*Binomial[k+1, 2], {n,12}, {k,n}]//Flatten (* _G. C. Greubel_, Jul 12 2022 *) %o A143219 (Magma) [n*Binomial(k+1, 2): k in [1..n], n in [1..12]]; // _G. C. Greubel_, Jul 12 2022 %o A143219 (SageMath) flatten([[n*binomial(k+1, 2) for k in (1..n)] for n in (1..12)]) # _G. C. Greubel_, Jul 12 2022 %Y A143219 Cf. A000012, A127648, A127773. %Y A143219 Cf. A002024, A002411 (right border), A002414, A002417 (row sums), A011379. %K A143219 nonn,tabl %O A143219 1,2 %A A143219 _Gary W. Adamson_, Jul 30 2008