A143225 Number of primes between n^2 and (n+1)^2, if equal to the number of primes between n and 2n.
0, 3, 9, 9, 10, 10, 16, 20, 19, 21, 23, 23, 24, 25, 28, 31, 32, 36, 38, 56, 57, 59, 59, 62, 65, 71, 75, 84, 88, 88, 96, 102, 107, 115, 116, 119, 120, 126, 125, 129, 132, 132, 163, 168, 168, 182, 189, 189, 192, 197, 198, 213, 236
Offset: 1
Keywords
Examples
There are 3 primes between 9^2 and 10^2 and 3 primes between 9 and 2*9, so 3 is a member.
References
- M. Aigner and C. M. Ziegler, Proofs from The Book, Chapter 2, Springer, NY, 2001.
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 5th ed., Oxford Univ. Press, 1989, p. 19.
Links
- T. D. Noe, Table of n, a(n) for n=1..97 (no other n < 10^6)
- T. Hashimoto, On a certain relation between Legendre's conjecture and Bertrand's postulate, arXiv:0807.3690 [math.GM], 2008.
- M. Hassani, Counting primes in the interval (n^2,(n+1)^2), arXiv:math/0607096 [math.NT], 2006.
- J. Pintz, Landau's problems on primes
- S. Ramanujan, A proof of Bertrand's postulate, J. Indian Math. Soc., 11 (1919), 181-182.
- J. Sondow, Ramanujan Prime in MathWorld
- J. Sondow and E. W. Weisstein, Bertrand's Postulate in MathWorld
- E. W. Weisstein, Legendre's Conjecture in MathWorld
Crossrefs
Programs
-
Mathematica
L={}; Do[If[PrimePi[(n+1)^2]-PrimePi[n^2] == PrimePi[2n]-PrimePi[n], L=Append[L,PrimePi[2n]-PrimePi[n]]], {n,0,2000}]; L
Comments